
Page 1 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

UPL
Utility Programming Language

for 6502 Processors.

Be afraid. Be very afraid.

VIC-20 Implementation.

Document: KD-UPL-UM-01.
This Document © Brendan Jones, 1994, 1998. All Rights Reserved.

As of April 12, 1998 the UPL Software is in the public domain.
Refer to the file LEGAL.TXT distributed with the software.

Page 2 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Page 3 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Legal Notice.

This legal notice covers the terms of use of this document. As of April 12, 1998 The
Commodore VIC-20 and Apple][implementations of the UPL Software have been placed
in the public domain. Refer to the file LEGAL.TXT distributed with the Software. The
software should not be distributed without that file.

Before you use this document for the first time, please read this Disclaimer and License
Agreement. By your action of using this document, you are agreeing to comply with all
terms contained in this License.

LIMITATION OF LIABILITY: WE (BRENDAN JONES AND OUR AUTHORISED
SUPPLIERS) OFFER NO WARRANTY OF ANY KIND EITHER EXPRESSED OR
IMPLIED INCLUDING THOSE OF MERCHANTABILITY, NONINFRINGEMENT OF
THIRD-PARTY INTELLECTUAL PROPERTY, OR FITNESS FOR A PARTICULAR
PURPOSE. NEITHER WE NOR OUR AUTHORISED SUPPLIERS AND
DISTRIBUTORS SHALL BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE OUR
SOFTWARE, PRODUCTS OR SOFTWARE, EVEN IF WE OR OUR AUTHORISED
SUPPLIERS AND DISTRIBUTORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. THIS PRODUCT OR SERVICE MAY NOT BE USED IN
JURISDICTIONS THAT PROHIBIT THE EXCLUSION OR LIMITATION OF
LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES.

You may redistribute this documentation, providing you meet the following conditions: a)
The document is distributed as a whole, including without modification this legal notice. b)
You do not received direct or indirect financial gain from the act of distributing or copying
this document.

This document contains other trademarks and servicemark names. These are the property of
their respective owners. Brendan Jones has placed the name “UPL” in the public domain.

References in this publication to products, programs, or services do not imply that we
intends to make these available in all countries in which we operate.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include the
names of individuals, companies, brands and products. All of these names are fictitious and
any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

We welcome comments on products and services including this software and
documentation. We may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

Page 4 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Page 5 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Table of Contents.
1. INTRODUCTION... 7

1.1 ACKNOWLEDGMENTS. ...8

2. THE UPL PACKAGE... 9

2.1 RUNNING UPL ON THE VIC-20..9
2.1.1 Loading from Tape...9
2.1.2 Using UPL with a VIC-20 Emulator...9

3. THE UPL LANGUAGE...11

3.1 IDENTIFIERS..11
3.2 DATA TYPES. ..11
3.3 PROGRAM. ..11

3.3.1 Constants...12
3.3.2 Variables..12

3.4 STATEMENTS. ...13
3.4.1 Assignment Statement...13
3.4.2 inc Statement..13
3.4.3 dec Statement...13
3.4.4 put, putln Statements..14
3.4.5 field Statement...14
3.4.6 get Statement..14

3.5 STRUCTURED STATEMENTS..15
3.5.1 Compound Statement..15
3.5.2 if Statement..15
3.5.3 repeat Statement...15
3.5.4 while Statement..16

3.6 EXPRESSIONS. ...16
3.7 SUBROUTINES. ..17

3.7.1 Procedure..17
3.7.2 Function...17

3.8 ADVANCED STATEMENTS. ...18
3.8.1 goto Statement..18
3.8.2 err Statement..18
3.8.3 push and pop Statements..19
3.8.4 clear Statement..19
3.8.5 mem Array...19
3.8.6 call Statement...20
3.8.7 mach Statement..20

3.9 COMMENTS...21
3.10 EXAMPLE. ...21

3.10.1 Multiplication Table...21

4. IMPLEMENTATION: COMMODORE VIC-20... 22

4.1 PACKAGE CONTENTS...22
4.2 THE MENU..22

4.2.1 New..22
4.2.2 Read text..22
4.2.3 Save text...23
4.2.4 List...23
4.2.5 Modify..23
4.2.6 Delete..23
4.2.7 Insert..24
4.2.8 Quit..24
4.2.9 Object save..24
4.2.10 eXecute..25
4.2.11 Compile..25

4.3 COMPILING. ..27

Page 6 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4.4 ERRORS. ...27
4.4.1 ?Out of Memory error..28

4.5 ERRORS. ...28
4.5.1 System Errors...28
4.5.2 Runtime Errors...29
4.5.3 Compile Errors Codes..29

4.6 MEMORY CONFIGURATION. ...30
4.7 LOOK MA! NO COMPILER!...31
4.8 ADVANCED FEATURES...32

4.8.1 Suppressing Overflow...32
4.9 BUGS. ...32
4.10 EXAMPLE. ...33

4.10.1 VIC-20 Meteor Shield...33

5. IMPROVEMENTS. 36

6. EMULATORS... 38

Page 7 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

1. Introduction.

Be afraid. Be very afraid. Did you know that in 1983 the Commodore VIC-20 had a full-
blown Pseudo-Pascal compiler? It generated native 6502 machine code. Although the
compiler was slow and had the unfortunate limitation of byte variables, the unoptimised
machine code it produced was very fast. The language was dubbed UPL; “Utility
Programming Language.” You could do anything in UPL you could do in assembler. UPL
was never released commercially. By 1984 the VIC was well on its way to extinction, being
overtaken by the vastly superior (and incompatible) Commodore 64.

Many years later, nostalgic for the arcade games of the good ‘ole days some talented
programmers have written VIC-20 emulators. These emulators allow old software written
for the VIC to be run on nearly any modern PC. (See the appendix for a list of emulators
and where you can download them.)

So now nearly fifteen years after I wrote UPL I’m able to rerelease purely as a historical
curiosity; An example of what you can do on a limited machine with limited resources if
that’s all you’ve got. It’s also a rebuttal to the revisionists who view think the VIC was a
practical joke by Commodore. The UPL Compiler itself ran entirely within the 16Kb
expansion cartridge. The VIC’s unexpanded 3.5Kb was left alone for storage of the
compiled UPL programs and the runtime library. The expanded VIC was considered the
development system, and the unexpanded VIC the target system for UPL programs. This
document is largely taken from the original 1984 manual, typed up on a DEC KL-10
mainframe! Emulator hints are printed in blue.

I wouldn’t recommend developing anything new with UPL. You could do much better with
a 6502 C cross-compiler. Then again you could do better still with a Pentium native
compiler.

�
 However if you want a laugh you can get it to say “Hello World” and look at

the arcade game listed beginning on Page 33. (Yes, It really does work.)

If you get a kick out of UPL then visit www.kdef.com/geek/vic. I’ve loaded up the best of
my old programs, including some still-playable arcade games and adventures. Enjoy!

Brendan Jones.
April 12, 1998.
E-mail: bj@kdef.com
Web: www.kdef.com/geek/vic

Page 8 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

1.1 Acknowledgments.
• The authors of the many VIC20 emulators for saving the VIC20 and its software from

oblivion. (They’re listed on Page 33.)
• Nikolaus Strater (nstrater@mcmail.com) for the VTR VIC-20 to PC tape loader.

Nikolaus says the number of people wanting to use this program worldwide must be
frighteningly small; perhaps 2-3. Make that 4!

• Jeff Minter (Author of Gridrunner) for starting the ball rolling by freeing up his own
commercial VIC-20 software.

Page 9 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

2. The UPL Package.

The UPL package consists of three programs. These programs have different names on the
1984 tape and 1998 emulator release of UPL.

File. Description.
Bootstrap. The UPL Boot program starts the loading process. It configures your

VIC moving the video memory to the same location it appears on an
unexpanded VIC. You’ll thus be able to develop UPL applications
using the same memory configuration as your target system. The boot
program then loads the UPL Runtime library and then loads and runs
the UPL Compiler. (On the original 1984 tape version of UPL this
program was called “UPL BOOT.B16”. On the 1998 rerelease for
emulators it is now called “UPL-BOOT.BAS.”)

Runtime Library. This is the UPL Runtime Library. It is a binary file loaded between
memory locations 4105 and 5008, inclusive ($1009 and $1390
hexadecimal). This file must be present for any UPL programs to run.
You can load the runtime library without the boot program simply by
typing the BASIC command LOAD “UPLRTIME.BIN” or LOAD
“RUNTIME.OBJ”. (On the original 1984 tape version of UPL this
program was called “RUNTIME.OBJ”. On the 1998 rerelease for
emulators it is now called “UPLRTIME.BIN.”)

Compiler/Editor. This is the UPL Compiler and Editor. Use this program to create, edit
and compile UPL programs. (On the original 1984 tape version of
UPL this program was called “COMP/EDIT.B16”. On the 1998
rerelease for emulators it is now called “UPL-TAPE.BAS.”)

2.1 Running UPL on the VIC-20.

2.1.1 Loading from Tape.

The UPL Package requires a VIC-20 with at least 16Kb of expansion memory.

Turn your VIC-20 on. Insert the UPL Package cassette into your VIC-20’s tape drive.
Holding down the SHIFT key tap the RUNSTOP key. You will be asked to press PLAY on
your tape drive. The full UPL package will be loaded automatically. When loading is
completed you will be presented with the UPL development menu.

2.1.2 Using UPL with a VIC-20 Emulator.

Page 10 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You may run the UPL Package on any modern microcomputer with a VIC-20 emulators.
Emulators are available for DOS, Windows, Unix and the Amiga. Refer to the Appendix
for a list of available emulators.

With the PCVIC emulator you may load UPL with a single command in DOS:

PCVIC UPL-TAPE.PCV

With the V20 emulator you may load UPL by first typing in DOS:

V20

Then select the “load state file” option from the “machine” pulldown. Enter the name
“UPL-TAPE.V20”. UPL will then be loaded.

To load UPL on any other emulator follow these instructions:

1. Load and run the program “UPL-BOOT.BAS”.
2. It will recongfigure your VIC in preparation for loading the rest of UPL. It’ll ask you to

press the PLAY button on your tape drive. Of course the vast majority of emulators don’t
have a tape drive. Press the RUNSTOP key on the emulated keyboard. (You’ll have to
refer to the emulator documentation to find which key is acting as RUNSTOP. On
PCVIC it is NUMLOCK. On V20 it is TAB.)

3. Load the binary file “UPLRTIME.BIN”.
4. Load the BASIC program “UPL-TAPE.BAS” (If you’re using PCVIC you’ll have to tell

the emulator to “undelete the BASIC program” after doing this).
5. Type the BASIC command “RUN” and press Return (Enter).
6. You should now be at the UPL menu.
7. At this point we recommend taking a “system snapshot” with your emulator. You can

use the snapshot to start UPL quickly without having to go through the above steps.

Most emulators lack emulated tape and disk drive support. This means you must type in
your UPL programs from scratch. However it will be possible to save and run your
compiled programs separately. See Section 4.2.9 on Page 24. You can also save your UPL
source code by telling the emulator to save the entire VIC-20 in a system “snapshot” file.
Refer to your emulator documentation for more detail.

Page 11 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

3. The UPL Language.

3.1 Identifiers.

Constants, Variables, Procedures and Functions are all identified by a name. This name is
known as an “identifier.” An identifier consists of a single lower case letter followed by zero
or more lower case letters or digits. No two objects may have the same identifier.

For example:

people
counter
plan9
californiastatesalestax

3.2 Data Types.

UPL recognises only one data type; the byte. A byte may hold an integer between the
values -128 and 127, inclusive.

With a compiler option you may specify that integers the range of values between 0 and 255
inclusive is also accepted. When this happens the values between -128 and -1 are mapped
onto 128 and 255 using the principle of “two’s compliment.” (Refer to a computing text on
binary arithmetic for further information.) Even if you enable this compiler option you’ll
still need to patch the runtime library to suppress overflow errors when calculating with
these larger numbers.

3.3 Program.

A UPL Program has the following form:

[constant-declarations]
[variable-declarations]
[subroutine-declarations]
compound-statement
.

The compound-statement is the main body of the program. It is what is executed when the
program starts running. This compound-statement must be followed by a single full-stop
(also known as a period) “.”. Those clauses shown in square brackets are optional. They
may be omitted if there are none to declare. Do not confuse these square brackets with the
bold square brackets of a compound statement; eg. “[]”. The bold square brackets indicate
that the square brackets appear in the UPL source code.

Page 12 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Here is a sample UPL program:

[putln(“Hello World”);].

3.3.1 Constants.

A constant may have a value of any integer ranging between -999,999 and 999,999,
inclusive. Unlike a variable a constant’s value may not be modified outside of its
declaration. If you assign or otherwise pass a constant to a variable or an expression only
the lowest 8 bits are transferred. For example, if the a constant having a value of 259 is
assigned to a variable then the variable will hold a value of 3.

The constants declaration has the following form:

cons
 { identifier = integer-value # , } ;

The bold word cons and characters “=”, “ ,” and “;” indicate they appear literally within the
source code. The curled braces indicate that the enclosed clause may be repeated zero or
more times, so long as a comma “,” is used to separate each instance.

For example:

cons
 numpeople=9,
 carriagereturn=13,
 limit=16,
 clearscreenroutine=58901,
 amountowed = 64;

3.3.2 Variables.

The variables declaration has the following form:

var
 { identifier # , } ;

For example:

var
 count, sum,
 person6;

The initial value of a variable is arbitrary; It should not be assumed to be zero.

The variables x, y, a and p are automatically declared. These correspond (although they are
not actually) the 6502 processors registers. c is a pseudo-variable that is true (non-zero) if

Page 13 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

the processor’s carry flag is set. The variable return is automatically declared in functions
to receive the value return as the function’s result.

3.4 Statements.

3.4.1 Assignment Statement.

An assignment statement assigns an expression to a variable. Assignment statements have
the following form.

identifier = integer-expression

Here are some examples:

numpeople=35
count=count + 1
x = 2 *(numberin - y) + k / 6

Spacing between the elements of an expression are ignored.

3.4.2 inc Statement.

The inc statement increments the variable of a variable. That is, it adds one to it. If the
variable is 127 then the value will wrap around to -128. Here is the form of the inc
statement:

inc identifier

For example:

inc count

3.4.3 dec Statement.

The dec statement decrements the variable of a variable. That is, it subtracts one from it. If
the variable is -128 then the value will wrap around to 127. Here is the form of the dec
statement:

dec identifier

For example:

dec count

Page 14 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

3.4.4 put, putln Statements.

The put and putln statements both print the value of an expression or a string of characters.
To print an expression as an integer follow it by the hash character “#”. To print it as an
ASCII character omit the hash. Here is the form of the put statement. The only difference
the put and putln statements is that putln finishes by printing a newline character.

put ({ expression [#] | character-string # , })
putln [({ expression [#] | character-string # , })]

The vertical bar indicates that each clause may be either an expression or a character-
string.

For example:

put(33) <prints ASCII character 33; “!”>
put(33#) <prints the number 33>
put(“hello there”) <prints “hello there”>
putln(“hello there”) <prints “hello there ” and goes to a newline >
put(“The answer is ”, 10+15#) <prints “The answer is 25” and newline>

3.4.5 field Statement.

The field statement specifies the number of characters that shall be used to print a number.
If this the field is set to zero, then only the minimum number of characters needed to print
the number will be used.

field (expression)

For example:

field(0); put(5#, 12#); field(10); putln(44#, -127#);

For the purpose of illustration we’ll use a dot to represent each space in the output:

5-12........44......-127

Note in the above example we use a semicolon “;” to separate the different statements.
Statements appearing in a list (except for structured statements, discussed later) must be
separated by semicolons.

3.4.6 get Statement.

The get statement gets values from variables from the input device (usually the keyboard).
If the variable name is followed by a “#” it will be retrieved as an integer, specified one per
line. If the variable name is not followed by a “#” then a single ASCII character will be
fetched from the input device and stored in the variable.

Page 15 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

get ({ variable-name [#] # , })

For example:

get(key) <gets a single character and stores it in variable key>
get(count#) <gets a single number and stores it in variable count>
get(x#, y#) <gets two numbers on two lines; one for x, one for y>

3.5 Structured Statements.

3.5.1 Compound Statement.

A compound statement groups zero or more statements together as a single statement.
Each statement is separated by a semicolon. The last statement should not be followed by a
semicolon.

[{ statement # ; }]

For example:

[putln(“Another one bites the dust”); inc count]

3.5.2 if Statement.

The if statement lets you conditionally execute one or two statements. If the expression is
true (non-zero) then the then statement is executed. If it is false then the else statement
is executed instead.

if expression then statement [else statement]

For example:

if count = 2
then putln(“two”)
else putln(“it is ”, count)

3.5.3 repeat Statement.

The repeat statement repeatedly executes a list of statements until an expression becomes
true (non-zero). The repeat statement is post-tested, which means the expression is
evaluated after the statements have been executed. This means the statements are executed
at least once.

repeat { statement # , } until expression

Page 16 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

For example:

count = 1;
rep eat
 putln(count);
 inc count
until count = 11;

3.5.4 while Statement.

The while statement repeatedly executes a statement until an expression becomes false
(zero). The while statement is pre-tested, which means the expression is evaluated before
the statement is executed. If the expression begins false then the statement will not be
executed even once.

while expression do statement

For example:

count = 1;
while not(count = 11) do
 [
 putln(count);
 inc count
]

3.6 Expressions.

Expressions may be made of the following operators.

Operator. Description.
not expression Returns the logical negation of the expression.

eg. not 0 returns -1, and not -1 returns 0.
expression and expression Returns true if both expressions are true.
expression or expression Returns true if either expression is true.
expression = expression Returns true if the two expressions are identical.
expression * expression Multiplies two integers together.
expression + expression Adds two integers together.
expression - expression Subtracts the second integer from the first.
expression / expression Divides the first integer by the second, returning a whole

number.
expression ! expression Divides the first integer by the second, returning the

remainder.
- expression Returns the arithmetic negation of an integer expression.

eg. -2
pos factor Returns true if a factor ≥ 0.

Page 17 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

neg factor Returns true if a factor < 0.
zero factor Returns true if a factor = 0.

UPL represents true by the value -1 and false by the value 0.

The usual operator precedence is applied. From strongest to weakest precedence these are:

• • and, or
• • *, /, !
• • +, -
• not, neg, pos, zero

Brackets may be used to override operator precedence.

3.7 Subroutines.

A UPL program may have any number of functions and procedures.

3.7.1 Procedure.

A procedure is a subroutine that does not return a value. It may be called from any place a
statement may be called. Procedures do not have any parameters, but they may access
constants and variables.

Here is the form for a procedure declaration

proc identifier ; compound-statement ;

For example:

proc boxofstars;
[putln(“**********”);
 putln(“* *”);
 putln(“**********”);] ;

3.7.2 Function.

A function is a subroutine that takes a single parameter and returns a value. It may be called
from within expressions.

Here is the form for a function declaration

func identifier (identifier) ; compound-statement ;

Page 18 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

The second identifier is the name of the temporary parameter variable. This variable must
have been previously declared. The result of the function is passed back in the
automatically declared variable return.

For example:

func mult2add3(value);
[return = value * 2 + 3];

Functions may be recursive. That is, they may call themselves directly or indirectly.

3.8 Advanced Statements.

3.8.1 goto Statement.

The goto statement jumps from anywhere within a program to a label.

Here is the form of a label, where integer is a number between 0 and 999,999.

integer :

Here is the form of a goto statement, which jumps to the specified label.

goto integer

Avoid gotos that jump out of or between subroutines. Such jumps skip code that
subroutines use to set up and then clean the program stack. Skipping such code will in most
circumstances cause the program to crash.

Gotos to a label in the same subroutine or in the main program block are perfectly legal.
They can however produce code that is difficult to follow.

Caution: Improper use of goto and labels can cause your program to crash and the
computer to lock up.

3.8.2 err Statement.

By default when UPL detects a runtime error (such as an attempt to divide by zero) it prints
an error message and halts execution of the program. You may however direct UPL to jump
to a label within the program to handle the error. Since this is in effect a goto the code you
jump to will be responsible for cleaning up whatever has been left on the program stack.

err (integer | off)

err off instructs UPL to handle runtime errors in the default manner.

Page 19 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Caution: Improper use of err can cause your program to crash and the computer to lock up.

3.8.3 push and pop Statements.

UPL maintains its own data stack separate from the processor stack. The data stack is used
internally by UPL to evaluate expressions. You may also access it the push and pop
statements, using it as a temporary place to store data.

push expression
pop variable

push pushes an expression on the data stack. pop retrieves it. Any elements you push on
the program stack within a subroutine must be popped before leaving it. You must not
attempt to pop more values than you pushed.

For example:

func fourthpower(number);
[push temp;
 temp = number * number;
 return = temp * temp;
 pop temp;] ;

Caution: Improper use of push and pop can cause your program to crash and the
computer to lock up.

3.8.4 clear Statement.

The clear statement empties the UPL data stack.

clear

The only situation that you may want to use this statement is if you are implementing your
own runtime error recover handler.

Caution: Improper use of clear can cause your program to crash and the computer to lock
up.

3.8.5 mem Array.

mem is an array that gives you access to the the computer’s memory. You may assign a
value to mem, or use it to peek into a memory location from within an expression.

Page 20 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You may assign an integer expression to the memory location offset + page * 256 with the
following form:

mem (offset, page) = expression

You may peek into the memory location offset + page * 256 with the following
expression:

mem (offset-expression, page-expression)

For example:

number = mem(250, 0);
mem(250, 0) = 10;

Caution: Improper use of mem can cause your program to crash and the computer to lock
up.

3.8.6 call Statement.

call constant [with reg]
call integer-address [with reg]

This calls a machine language subroutine at the specified address. If the keywords with
reg are specified then the values of the automatically-declared variables x, y, a and p are
moved into the corresponding 6502 processor registers before the call, and their new values
replaced afterwards.

Caution: Improper use of these statements can cause your program to crash and the
computer to lock up. In particular when using call with reg form that you don’t
accidentally set the 6502 into decimal mode via the p register. You can guard against this
by forcibly clearing the decimal bit before making the call with reg; p = p and 119 .

3.8.7 mach Statement.

mach ({ integer # , })

The mach statement inserts the specified byte integer expressions directly into the 6502
processor instruction stream. These integers must be between 0 and 255, inclusive.

Caution: Improper use of this statement can cause your program to crash and the computer
to lock up.

Page 21 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

3.9 Comments.

Comments may appear in a UPL program between adjacent symbols (ie. identifiers,
keywords, numbers, character strings and single characters). Comments begin with an
opening less-than sign and close with a greater-than sign. They may cover multiple lines.
Comments may not be nested.

For example:

< This is a comment. >
< And so
 is this!
 >

Note that UPL does not implement traditional comparison operators such as <=. You can
however emulate them using bit operators and the pos and neg functions.

3.10 Example.

3.10.1 Multiplication Table.

< This simple example prints a multiplication table. >
var
 factor, index;
[
 putln(“Multiplication Table.”);
 putln;

 put(“Type in a factor: ”);
 get(factor#);

 field(4);
 index = 1;
 while not (index = 11) do
 [
 putln(factor#, “*”, index#, “=”, factor*index#);
 inc index
]
].

Page 22 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4. Implementation: Commodore VIC-20.

4.1 Package Contents.

See Section 2.1 on Page 9 for a list of Package contents and loading instructions for the
VIC-20.

4.2 The Menu.

The menu appears when you start the UPL compiler and editor. You may use the
commands on the menu to create, edit and compile UPL programs. You may also save them
on tape.

Upl compiler/editor
16-Jan-84 v0.1

New Compile
Read text Save text
List Modify
eXecute Insert
Delete Object save
Quit

?

To invoke a command type the capitalised letter within its name and press enter. For
example, to create a new program type “n” for “New”. To execute a program type “x” for
“eXecute.”

(An exception to this is the “Insert” command. It expects you to follow the letter “i” with
the line number you wish to insert after. For example, “i0” will begin insertion at the
beginning of the UPL program. Type “@” on a single line to end insertion.)

4.2.1 New.

You will be asked if you are sure. If you answer ‘y’ then your current program is lost and
UPL restated.

4.2.2 Read text.

This loads the saved source code of a UPL program from the tape device. On invoking this
command you will be asked if you are sure. If you reply ‘y’ your current program will be
lost. You shall then be asked for the filename of the UPL program to load from tape. If you

Page 23 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

hit return this will default to “???”. Whatever you type the extension “.upl” will be added.
UPL will then search the tape for and load the specified file.

To abort the search press the RUNSTOP key, enter the BASIC command “RUN” and press
Return (Enter) to restart UPL.

Emulator Hint: This command will not work on VIC-20 emulators lacking tape emulation
(just about all of them). Instead you should use the emulator’s “snapshot” function to
restore a saved system state, which will include UPL and your UPL program. (See the
“Save Text” Command below.)

4.2.3 Save text.

This saves your file on tape. You will be prompted for a filename as described in Section
4.2.2. The UPL program is kept in memory after saving so you may continue working with
it.

Hint: It is a good idea to save your UPL program regularly, in case you accidentally lose it
or your computer crashes taking your program with you.

Emulator Hint: This command will not work on VIC-20 emulators lacking tape emulation
(just about all of them). Instead you should use the emulator’s “snapshot” function to save
the system state, which will include UPL and your UPL program.

4.2.4 List.

This command lists your program. You will be prompted for the starting line number. If
you simply press return this will default to the first line in the program. You will then be
asked if you want the lines to be numbered. (Type ‘1’ to number them, or ‘0’ to list them
without line numbers.)

Once the listing UPL will pause on each line. Hold the F7 key down to step through the
listing. Press the DEL key to halt the listing.

4.2.5 Modify.

This asks you for the number of the line you wish to modify. The line will then appear, and
you will be invited to type a new line that shall replace it. You may use the cursor keys to
edit up and change it directly, or you may type a new line from scratch. If you decide not to
change it enter a line containing only the at-character “@”.

4.2.6 Delete.

Page 24 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You will be asked a range of lines to delete. The lines will be deleted from the first line you
specify upto but not including the last line. For example, “4,9” will delete lines 4, 5, 6, 7
and 8. If you ask to delete a large number of lines you will be asked if you are sure;
Answer ‘y’ to continue the deletion.

4.2.7 Insert.

The Insert command expects you to follow the menu letter “i” with the line number you
wish to insert after. For example, “i0” will begin insertion at the beginning of the UPL
program. Type “@” on a single line to end insertion.

For example:

Upl compiler/editor
16-Jan-84 v0.1

New Compile
Read text Save text
List Modify
eXecute Insert
Delete Object save
Quit

?I0
< An example program. >
[
 putln(“Hello world”)
].

@

?

4.2.8 Quit.

This exits UPL and returns to BASIC. To return to UPL with your program intact type
“GOTO 15” and press Return (Enter). This should be done immediately, less you
accidentally clear the UPL compiler/editors variables and with them, your UPL program.

4.2.9 Object save.

You may only choose this command after successfully compiling your UPL program. The
command saves the object code version of your program (also known as the “executable” or
“binary”). This is the runnable version of your UPL program.

You will be prompted to press RECORD and PLAY on your tape device. The object code
version of your program will be saved on tape.

Page 25 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You will be asked if you want to verify the save (to make sure there are no media errors). If
you want to verify the object code then press STOP and REWIND on your tape to return to
where you started saving the object code. Then answer ‘y’ to verify. You will be prompted
to press PLAY on the tape device. The object code will then be verified. You will be
alerted if there is an error. If there is try saving again with a different (newer and/or better)
tape. If you did not elect to verify the object code then these steps will be skipped.

Emulator Hint: This command will not work on VIC-20 emulators lacking tape emulation
(just about all of them). But depending on your emulator you may be able to save the object
code directly to disk with the emulator anyway. When UPL finishes compiling it will tell
you the location of object code. For example [5009 141 5140] says that the object code is
between memory locations 5009 and 5140 inclusive, and is 141 bytes long. (You can run
your program by going “SYS 5009” from BASIC). In hexadecimal this memory range
covers between $13EB and $1414 inclusive, and is $8D bytes long. If you use your
emulator to save a binary file covering these memory locations then you will have saved
your program. Additionally the UPL runtime library (which you need to run your compiled
program anyway) occupies memory locations $1009 to $1390 (4105 to 5008 decimal). If
you save the entire memory space from $1009 to (in this example) $1414 inclusive then you
will have saved your program and the runtime library in a single package. You may then
load this file on any VIC or VIC emulator and type “SYS 5009” from BASIC to run you
program. Could it be any simpler? �

4.2.10 eXecute.

You may only use this option after having successfully compiled your program. On
invoking this command you will be asked if you are sure. If you reply ‘y’ then your
program shall be run. If there is an error (eg. no object code is present) you will be returned
immediately to the menu.

Otherwise your compiled UPL program shall run. It’s output shall be surrounded by lines
saying “running” and “run ends.”

4.2.11 Compile.

The 6502 processor inside the VIC-20 cannot execute UPL directly. We must translate it
into 6502 machine code which the processor can run directly. This is the function of the
“Compile” command; To take your UPL program and convert it into 6502 machine code.
We can then use the “eXecute” command to run the generated 6502 machine code.

When you invoke the command option you’ll receive the following prompts. Each prompt
shows its default value in brackets. By pressing Return (Enter) without typing anything else
you’ll take the default value. Otherwise type the value you want and then press Return
(Enter),

default options(y)? If you want a normal compilation with all the default values
simply hit return. Otherwise ‘n’.

Page 26 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

above correct(y)? Hit return to start the compilation. Otherwise ‘n’.

If you did not select the default options you’ll have an opportunity to review and change the
compilation options:

code start(5009)? Beginning at what memory location (expressed in decimal)
shall the generated 6502 machine code be inserted into
memory? The memory area between 5009 and 7679 is
guaranteed to be free for your compiled UPL program. If you
specify another memory area make sure it is not already being
used by something else.

code limit(7679)? The last memory location in the memory area that may be used
to store your compiled UPL program.

stack checking(y)? The 6502 processor contains a small stack of only 256 bytes.
If you’re calling a lot of subroutines it’s possible to overrun
this stack, causing your computer to crash. Selecting this
option will insert code that checks the stack during the start of
each subroutine call to make sure there’s still some room.
This additional code will however slow down your program a
little.

integers >127(y)? Normally UPL will only permit integers between -128 and
127. If you answer ‘y’ to this option it’ll also allow integers
between 128 and 255. It does this by mapping the range -128
to -1 onto 128 and 255. So for example -1 and 255 are
considered to be the same number. (Actually they are by the
law of two’s compliment. See a computer textbook on binary
arithmetic for more details.) If you can handle this concept
then answering ‘y’ to this option will give your UPL program
permission to use the full range of byte values in the UPL
source. It doesn’t disable overflow detection.

auto setup(y)? Normally when at the start of a compiled UPL program the
compiler inserts the following statements; clear; err off;

field(0); . These set up the UPL runtime library. If you type
‘n’ these statements will not be inserted. You should make
other arrangements, since without at the very least clearing the
UPL data stack your computer may crash.

terminating
opcode[b/r](r)?

If you type ‘b’ when your UPL program finishes execution
it’ll execute a 6502 BRK (break) statement. This clears the
screen and returns to the BASIC command line. If you use ‘r’
then your program will be terminated with a 6502 RTS (return
from subroutine) instruction. This returns it to where you left
it; whether it was from a SYS call on the BASIC command
line, or a SYS call from within a BASIC program. On
returning BASIC will pick up where it left off.

Page 27 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4.3 Compiling.

Here is some sample output from using the compiler:

default options(y)?
above correct(y)?
compiling
pass 1
....
pass 2
....
successful compilation
[5009 141 5140]

The compiler makes two passes through the source code. The first pass checks for errors
and calculates the addresses of the objects in the program. The second pass generates the
machine code.1 A dot is printed everytime a group of lines is processed. This gives you an
idea of the relative speed and progress of the compilation.

Those numbers at the bottom tell you the location and size of your program expressed in
decimal (base 10). They are in the following form:

[start-address size-bytes last-address]

For example, [5009 141 5140] says that the object code is between memory locations 5009
and 5140 inclusive, and is 141 bytes long. So long as the UPL runtime library is loaded,
you can run your program by going “SYS 5009” from BASIC.

4.4 Errors.

If the compiler detects an error during compilation it’ll halt and report the error. For
example:

var
 index;
putln(“hello”)]. < Note we left the first “[” out >

This will report the error thus:

compiling
pass 1
...
error 4 in line 3
 putln<<<
“[”
expected.

1 In hindsight, if UPL had been designed so it did not have a goto statement and used a different form for the err
statement then UPL could have been implemented as a single pass compiler. This would have cut compile time in
half!

Page 28 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

“putln”
is not allowed here.
continue(y)?

See Section 4.5.1 on Page 28 to see what compilation error “4” means.

The “continue(y)? ” is the compiler asking you if it should continue trying to compile the
program, even though a fatal error has been found. If you answer ‘y’ then UPL will
continue looking for errors. It’ll terminate at the end of the first pass so you may correct the
errors and try again.2

4.4.1 ?Out of Memory error.

If the UPL compiler halts with the BASIC error “?Out of Memory error ” then your UPL
program is too complex for it to parse. This can happen if your expressions are very deeply
nested (eg. have too many brackets inside brackets). You can avoid this by splitting such
complex expressions up into simpler expressions using simpler variables.

You can return to the menu with your editor intact by typing the following on the BASIC
command line:

print si: goto 15

Do this immediately, otherwise you might enter a command that causes BASIC to lose your
UPL program.

4.5 Errors.

In order to preserve memory, the VIC-20 implementation reports errors as numbers.
(Having full error descriptions in the compiler/editor would have taken room away for
storing your UPL program.) You can look up errors in the following sections.

4.5.1 System Errors.

System errors are generated when you do something that doesn’t make sense. For example,
trying to insert a negative line number.

System Error Codes.

0. Impossible request. eg. Inserting a negative line number.
1. No more memory space for source program (150 line limit).
2. Object code save got a verify error.

2 Apparently UPL version 0.1 did not implement error recovery. A pity; With UPL’s slow compile time it’d be much
better to try and find all the errors in a single parse.

Page 29 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4.5.2 Runtime Errors.

A runtime error is reported when an error is detected while your compiled UPL program is
executing. For example, runtime error “4” would be reported with the following message.

Rerror upl 4

You can return to the menu with your editor intact by typing the following on the BASIC
command line:

print si: goto 15

Do this immediately, otherwise you might enter a command that causes BASIC to lose your
UPL program.

Runtime Error Codes.

0. UPL Data Stack overflow. Too much data has been pushed on the UPL Data Stack. This
could be because of a complex expression, not enough space being left to evaluate a
simple expression, too many functions being called at once or the push statement being
overused.

1. Additional or subtraction overflow. An expression has resulted in a integer that exceeds
the allowable range of byte values.

2. Division or modulo (remainder) by zero error.
3. Multiplication error. An expression has resulted in a integer that exceeds the allowable

range of byte values.
4. Bad field width. The field value must be between 0 and 80.
5. UPL Data Stack underflow. Too much data has been popped off the stack. This can be

caused by overusing the pop statement.
6. Processor stack overflow. The 6502 processors stack has or is about to overflow. Too

many functions or procedures have been called at once.

4.5.3 Compile Errors Codes.

Compile Error Codes.

0. Program is incomplete. Did you forget the terminating dot after the main compound
statement? Perhaps the closing “]” on a compound statement? Maybe you forgot a
closing double-quote on a character string? etc.

1. Identifier or label declared twice.
2. Too many identifiers or labels declared.
3. This identifier was not declared.
4. Something was expected, but not found. Perhaps the previous statement did not have a

terminating semicolon? Check the previous line.
5. Too many structured statements nested inside one another.
6. Label does not appear within the program.
7. Label is expected here.

Page 30 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

8. Label of “off” expected here.
9. Machine code integers must be between 0 and 255, inclusive.
10. “inc” or “dec” may only be used on variables.
11. You may only “call” an integer or constant.
12. Only variables may be got with “get”.
13. Not enough memory to store the compiled program. When compiled your UPL program

generates too much object code to fit into the allocated memory space. Try simplifying
your program, and using common code where possible. If worst comes to worst you
can write your program in modules located in different parts of memory and have them
call each other. But try simplifying your program first.

14. A constant is not allowed here.
15. Integer exceeds 127. (You may turn this off with the “integers>127” compiler option.)
16. A function is not allowed here.
17. Constant in expression exceeds 127. (You may turn this off with the “integers>127”

compiler option.)
18. Factor is expected. A factor is the simplest element in an expression. Factors may be a

variable, an integer, a function call, a character string in “put” and “putln”, the “mem”,
“pos”, “neg” or “zero” functions, “c” (carry), an expression in (round) brackets or
starting with “not”. In other words part of an expression was expected but not found.

19. Only variables may be popped.
20. Integer expected.
21. A function parameter must be a variable.
22. Identifier expected.
23. Integer is too large. Must be 999,999 or less.
24. Identifier not declared.
25. Illegal start of a statement. A statement can’t start with that!
26. Identifier not declared.
27. Illegal separator or statement start. A statement separator “;” or statement should be

here, but isn’t.

4.6 Memory Configuration.

You only need to read this if you’re calling machine code other than that created by UPL or
poking the memory array.

Do not use the following memory locations (specified in decimal): 251-255 or 673-767
(both used by the UPL runtime library), 4069-5008 (the runtime library itself) or of course
the area where the compiled UPL program is stored (the range reported at the end of
compilation).

Further note that under UPL a VIC-20 with 16Kb+ of expansion memory is reconfigured to
look like an unexpanded VIC; the target system of the UPL system. Screen memory begins
at 7,630 decimal and colour memory at 38,400.

Page 31 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4.7 Look Ma! No Compiler!

This section describes how to run your compiled UPL program without needing to load the
compiler.

As described above, UPL programs expect to run on an unexpanded VIC. Thus if you are
using a 3.5Kb VIC no changes are necessary. However if you are using a VIC with 8Kb or
more of expansion memory you must relocate video memory to the above locations. Type:

poke 36866, 150: poke 36869, 242: poke 648, 30: print chr$(147)

If you still want to load a BASIC program while your UPL program is in memory you’ll
need to locate BASIC too. This’ll depend on the memory area occupied by the compiled
UPL program. The following example relocates BASIC to begin at 10,240 decimal
(memory page 40). Remember under most circumstances you won’t need to do this.

poke 43, 1: poke 44, 40

Emulator note: Loading and run the BASIC program UPL-BOOT.BAS will run a short
machine-language program that moves everything into the right place, including the video
memory. After doing this it will try and load the UPL runtime library off tape. Because
most emulators don’t have tape support you’ll need to hit RUNSTOP.

You’ll now need to load the runtime library. Simply type the following to load the runtime
library off the UPL system package tape.

load “uplrtime.bin”

Emulator note: With most emulator you can load the runtime library directly into memory
straight off disk. Under PCVIC type [Escape][I][U] and enter the path of the runtime library
file. Under V20 load the runtime library as if it were an BASIC program. Note that not all
emulators can do this, although you could hack a way around it by converting the runtime
library so it looks like a ROM cartridge file (albeit one located at $1000-$1390, or decimal
4096-5008).

You can now load your compiled UPL program from tape. For example:

load “galaxy”

When the VIC loads a binary from tape it stores the start address in the memory locations
193 (low byte) and 194 (high byte). Accordingly you should be able to run your program
with the following command:

sys peek(193)+peek(194)*256

Emulator note: Use the emulator to load your binary file directly from disk. Since the VIC
won’t have set memory locations 193 and 194 for you you’ll need to remember the starting
location (the entry point) of your compiled VIC program. For example, SYS 5009.

Page 32 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

If the computer crashes then maybe you loaded the wrong program, had a tape read error,
didn’t load the runtime library or relocated video memory incorrectly.

Doing all this setup can be time consuming. To save yourself having to do this every time
you want to run the program we recommend you save a single binary file containing the
runtime library (4096-5008, $1000-$1390) and your compiled UPL program. You can then
write a little BASIC program to put on the tape before your saved binary. The BASIC
program will write and execute a short machine code program that loads your file and then
calls the entry point; usually 5009 decimal.

4.8 Advanced Features.

4.8.1 Suppressing Overflow.

It’s easy to move a graphical character across the screen’s page boundary by using the carry
flag.

mem(playerlo, playerhi) = 32; <blank the shape>
playerlo = playerlo + 22; <move it down a row>
if c <if carry is set>
then inc playerhi <then we need to jump to the next page>
mem(playerlo, playerhi) = 83; <redraw the shape at its new position>

Unfortunately UPL will raise an overflow runtime error when playerlo exceeds 127. This
will happen even when the compiler option allowing numbers > 127 has been set. The
compiler option only allows those numbers in the source; It doesn’t prevent overflow
errors.

In order to disable an overflow you need to add the following code to the start of your UPL
program:

mem(135,16) = 162;
mem(149,16) = 162

You may now execute the above code without any overflow errors. To reenable overflow
detection restore those two memory locations to their original values. You must do this
before your program exits, otherwise other programs using the Runtime Library will also
have overflow detection disabled.

mem(135,16) = 112;
mem(149,16) = 112

Caution: Placing values other than 162 or 112 in the above memory locations will cause
your program to crash or return erroneous results.

4.9 Bugs.

UPL version 0.1 for the VIC-20 contains the following bugs:

Page 33 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

• Integer -128.
 Printing -128 causes a few punctuation symbols to appear instead of “-128”. Also be

aware that the negative of -128 under an 8 bit two’s compliment system is in fact -128!
• Multiplication.
 Multiplications that overflow by a small amount (eg. exceeding 127 by 3) are not

detected.

4.10 Example.

4.10.1 VIC-20 Meteor Shield.

<meteor shield.
 set compiler option integer >= 127 to yes.
 compile time 20+ minutes.
 block the meteors using l and ;>

cons
 false=0,
 true=-1,
 meteorshape=209, <A ball>
 shieldshape=214, <A cross>
 cityshape=177, <Superstructure>
 blankshape=32, <A blank>
 homech=19, <homes cursor when printed>
 clearch=147; <clears screen when printed>

var score, <current score>
 shieldlo, <offset on bottom screen page of shield>
 meteorlo, <screen page of meteor>
 meteorhi, <offset on screen page of meteor>
 index, <initialisation counter>
 loop, <delay loop counter>
 citydestroyed, <true when city is destroyed>
 ch, <Another game? 'y' or 'n'>
 counter, <Moves meteor every f ifth cycle>
 keytyped; <current key pressed>

func key; <Return the current key pressed>
[return=mem(197,0)];

proc delay; <Waste some time>
[loop=0;
 repeat
 inc loop
 until loop=150];

func random; <Return a pseudo-random number>
[call 57492;
 return=mem(141,0)!22;
 if neg then return=-return];

proc setscreen; <Clear the screen and draw the city>
[mem(15,144)=8;
 put(clearch);
 index=228;
 repeat
 mem(index,31)=cityshape;
 inc index
 until index=250];

Page 34 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

proc setmeteor; <Set the meteor somewhere on the screen top>
[meteorhi=30;
 meteorlo=random+22;
 mem(meteorlo,meteorhi)=meteorshape];

proc setshield; <Draw the player shield>
[shieldlo=206;
 mem(shieldlo,31)=shieldshape];

proc movemeteor; <Move the meteor down one>
[mem(meteorlo,meteorhi)=blankshape; <Blank the old meteor position>
 meteorlo=meteorlo+22; <Move it down one row >
 if c then inc meteorhi; <If carry then go to the next page>

 if mem(meteorlo,meteorhi)=shieldshape <If meteor hit the shield...>
 then [setmeteor; inc score; put(homech,score#)]) <Good! Caught by player!>
 else if mem(meteorlo,meteorhi)=cityshape <If meteor hit city...>
 then citydestroyed=true <City is toast>
 else mem(meteorlo,meteorhi)=meteorshape]; <Hit nothing; draw at new
positon>

proc moveshield; <Move player shield>
[mem(shieldlo,31)=blankshape; <Blank old position out>
 keytyped=key; <What key did they press?>

 if (keytyped=21) and not(shieldlo=206) <move left?>
 then dec shieldlo
 else if (keytyped=22) and not (shieldlo=227) <move right?>
 then inc shieldlo;

 mem(shieldlo,31)=shieldshape]; <Draw shield at new postion>

proc title; <Title screen>
[putln(clearch,142,"Meteor Defense"); <Clear screen>
 putln;putln;putln("type return to play");

 repeat
 get(ch)
 until ch=13]; <Wait for return to be pressed>

proc initialise; <Initialise for a new game>
[score=0; <Reset score>
 counter=0; <Reset meteor movement counter>

 setscreen;
 setshield;
 setmeteor;

 citydestroyed=false]; <City is ok>

< main program here >
[mem(15,144)=27; <Set screen colour>
 mem(135,16)=162; <Patch UPL runtime to ignore overflow>

 title;
 repeat

 < Play a game until the score reaches 100 or the city is destroyed>
 initialise; <Set everything up>
 repeat

Page 35 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

 delay; <Waste some time>
 moveshield; <Let the player move their shield>

 inc counter; <Move the meteor every fifth cycle>
 if counter=4
 then
 [counter=0;
 movemeteor]
 until (score=100) or citydestroyed;

 putln; putln; putln; <Put some space between the score and message >

 <Give the player some feedback>
 if citydestroyed
 then if putln("Oh no! The meteor hit the city!!")
 else [putln("You saved the city!");
 putln("You are the wind beneath Wally's wings!");]

 putln("play again ?");
 get(ch);
 put(ch)
 until ch="n";

 mem(135,16)=112]. <Patch UPL runtime to stop ignoring overflow>

Page 36 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

5. Improvements.

The UPL Software has been placed in the public domain. You’re free to modify it.

But I wouldn’t recommend this to anyone. The Compiler/Editor is written in BASIC. Due
to speed and memory considerations it contains no comments. I planned the program
meticulously on paper, I don’t have the time or inclination to scan in those handwritten
notes. As a language BASIC is awful, and BASIC programs are practically unmaintainable.
BASIC is basically assembler with a few LEFT$()-type functions!

If you’re interested in learning how to write compilers I recommend you get a decent book
on compiler design, and learn how to write a top-down LL(1) parser. Do it in a high-level
language like C or C++. You’ll end up with a product that’s better, faster and maintainable.

I can’t imagine anyone wanting to write software for a VIC-20. Indeed I’d discourage it.
The VIC-20’s scant memory resources and slow processor forced programmers to write
compact and efficient code. With today’s bloatware this appears to be a lost art, but there’s
no practical reason it can’t be practised on a modern PC. If you must write a serious
application for a VIC-20 (perhaps you’re an embedded systems designer who’s realised
there are a lot of $5 VICs in garage sales)3 I’d recommend you find a decent 6502 C cross-
compiler with optimisation.

In 1983 as a first year computer science student writing the UPL compiler was a terrific
learning experience. With a little more time and experience I would have loved to have
written a Pascal compiler ROM cartridge that though some cheap and clever connector was
able to piggyback with a 16Kb RAM cartridge. The software churned out on the VIC
during it’s short lifetime was remarkable, but with a decent development system like that it
would have been moreso. I’ve written many compilers since then; My latest being an
integrated database scripting language called RedScript that takes the best features of C++,
Pascal and Java and rolls them all into one. You can read about RedScript on
http://www.kdef.com.

Looking back I realise it would have been better to make UPL a 16-bit Pascal or even “C”
clone. The byte data types are very difficult to work with. UPL could have used more
fundamental data structures like arrays and perhaps structures and enumerated types. The
Runtime library should have been smaller too; what’s the point in wasting a hundred-or-so
bytes on a small system with a number-input routine when the program doesn’t need it?
Similarly UPL makes no attempt at optimising its output; On a small, slow processor that’s
a luxury you can ill-afford.

After I finished the VIC-20 implementation of UPL I got and ported it to an Apple][. There
it received an Unix-like editor and a substantial performance boost with the Einstein Apple
BASIC compiler.

3 I recently picked up a VIC-20 for $15. All I really wanted was the RF modulator, but I got the VIC-20, a decent
Commodore dot matrix printer and 1541 disk drive thrown too!

Page 37 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

If I had continued with VIC-20 UPL I would have done this...

• Increased the 150 line UPL source limitation. (Easy; It’s an arbitrary constant.)
• Added disk drive support. (Very easy).
• Added compiler error recovery, detecting multiple errors per pass. (Not so easy).
• Dropped labels and made UPL a much faster one-pass compiler. (Not that hard.)
• Written a smaller runtime library. (I do have the source for the original on a tape, but I

haven’t been able to transfer it. If anyone really wants it give me a yell.)
• Added peephole and register optimisation. (With a bit of clever coding it could be done.)
• Added simple arrays. (The mem function already partially does this.)
• Rewritten the UPL compiler in UPL! (How Zen!)

Following UPL I started writing a full-blown 16-bit Pascal implementation with a friend for
the Apple. A week into this new project some guy called Phillipe Kahn came out with a
thing called “Turbo Pascal.” The rest is history.

Page 38 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

6. Emulators.

At the time of writing the following VIC 20 emulators were available. Currently we
recommend PCVIC.

Emulator. Description.
PCVIC 1.14 Author: B.W. van Schooten.

Platform: DOS.
PCVIC is my favourite emulator, because it’s fast! It is a little rough
around the edges. For example, to load a BASIC program you must
tell PCVIC first to load it, and then to “undelete” it. Fortunately
PCVIC supports a snapshot format called “PCV” which saves a lot of
this mucking around.

wwwhome.cs.utwente.nl/~schooten/software/vic-20/pcvic.html
V20 Author: Lance Ewing.

Platform: DOS.
Good! Generally easy to use and better file loading interface than
PCVIC, but slower. However you’ll need to rename any BASIC files
.bin in order for V20 to see them. Debug mode could be better done;
the seemingly innocuous -b command and not -q will return you to the
emulator.

crash.ihug.co.nz/~be/vic.htm
Pfau Zeh Author: Arne Bockholdt.

Platform: Linux, Win32.
Pfau Zeh is a relatively new arrival on the VIC emulation scene. It has
a nice interface, but the Win32 version is very slow on my Pentium 60.
Arne recommends you run this on a high-end system with a fast video
card.

Warning: At the time of writing Pfau Zeh does not include support to
load binary programs such as UPL’s UPLRTIME.BIN . While you can
hack around this it would be much easier to use an emulator that does
support binary programs such as PCVIC or V20.

stud.fbi.fh-darmstadt.de/~bockhold/pfauzeh.html
VICE 0.14.2 Author: André Fachat and a cast of many.

Platform: Unix, DOS, Amiga, others.

VICE was originally just a Commodore 64 emulator, but has since had
support added for the VIC-20 and PET. One of VICE’s nicest features
is it’s integrated file support; it can simulate a tape or disk drive
attached to the emulated machine. Although VICE has been ported to
DOS it currently doesn’t run under Win95.

Page 39 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

www.tu-chemnitz.de/~fachat/vice/vice.html
VIC-20 1.1 Author: Paul Robson.

Platform: DOS.

members.aol.com/autismuk/emu.html
VIC-EMU Author: Pieter van Leuven.

Platform: Amiga.

ftp.funet.fi/pub/cbm/crossplatform/emulators/Amiga/vicV0.65.lha

Page 40 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Index.

"

"@" Character...24

6

6502...32
BRK..26
Carry...12, 32
Inline machine code..20
Registers...12, 20
RTS..26

A

asm..20
Assignment statement..13
Auto Setup...26

B

Bugs..32

C

call statement...20
clear statement...19
Code Limit...26
Code Start..26
Comments..21
Compiling UPL..25
Compound statement..15
cons...12
Constants...12

D

Data Types...11
Byte..11

dec statement...13
Delete..23

E

Emulators..38
err statement..18
Error

?Out of Memory..28
Cerror...29
Compile time..29
Rerror...29
Runtime..29
Serror..28
System..28

Example...21, 33
eXecute..25
Expressions..16

F

field statement..14
Files..9
func ...18
Function...17

G

get statement..14
goto statement..18

I

Identifiers..11
if statement..15
inc statement..13
Input..14
Insert...24

stopping..24
Integers..11

L

List ..23
Loading...31

M

mach statement..20
mem array..19
Memory

Configuration..30
examining...19
modifying ...19
peeking...19
poking...19
Reserved areas..30

Menu...22
Modify ...23

N

New...22
Numbers

127...11
-128..11
255...11, 26
Disabling Overflow...32
Input...14
Large..26

O

Object save...24

P

Package
Files..9

pop statement...19
Printing...14
proc...17
Procedure...17
Program...11
push statement...19
put statement...14
putln statement..14

Page 41 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Q

Quit ...24
Resuming..24

R

Read text..22
repeat statement...15
Running

Without compiler..31
Running compiled UPL..25
Runtime

Reserved Memory...30
Runtime Library

Disabling Overflow...32
Errors..29

S

Save text..23

Stack
Checking..26
Processor...26
UPL Data..26

Subroutines..17

T

Terminating Opcode..26

V

var...12
Variables...12

reurn...12
VIC-20 Emulators..38

W

while statement..16

