UPL

Utility Programming Language
for 6502 Processors.

Be afraid. Be very afraid.

VIC-20 Implementation.

Document: KD-UPL-UM-01.
This Document © Brendan Jones, 1994, 1998. All Rights Reserved.

As of April 12, 1998 the UPL Software is in the public domain.
Refer to the file LEGAL.TXT distributed with the software.

Pagel of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Page2 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Legal Notice.

This legal notice covers the terms of use of this document. As of April 12, 1998 The
Commodore VIC-20 and Apple][implementations of the UPL Software have been placed
in the public domain. Refer to the file LEGAL.TXT distributed with the Software. The
software should not be distributed without that file.

Before you use this document for the first time, please read this Disclaimer and License
Agreement. By your action of using this document, you are agreeing to comply with all
terms contained in this License.

LIMITATION OF LIABILITY: WE (BRENDAN JONES AND OUR AUTHORISED
SUPPLIERS) OFFER NO WARRANTY OF ANY KIND EITHER EXPRESSED OR
IMPLIED INCLUDING THOSE OF MERCHANTABILITY, NONINFRINGEMENT OF
THIRD-PARTY INTELLECTUAL PROPERTY, OR FITNESS FOR A PARTICULAR
PURPOSE. NEITHER WE NOR OUR AUTHORISED SUPPLIERS AND
DISTRIBUTORS SHALL BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE OUR
SOFTWARE, PRODUCTS OR SOFTWARE, EVEN IF WE OR OUR AUTHORISED
SUPPLIERS AND DISTRIBUTORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. THIS PRODUCT OR SERVICE MAY NOT BE USED IN
JURISDICTIONS THAT PROHIBIT THE EXCLUSION OR LIMITATION OF
LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES.

You may redistribute this documentation, providing you meet the following conditions: a)
The document is distributed as a whole, including without modification this legal notice. b)
You do not received direct or indirect financial gain from the act of distributing or copying
this document.

This document contains other trademarks and servicemark names. These are the property o
their respective owners. Brendan Jones has placed the name “UPL” in the public domain.

References in this publication to products, programs, or services do not imply that we
intends to make these available in all countries in which we operate.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include the
names of individuals, companies, brands and products. All of these names are fictitious and
any similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

We welcome comments on products and services including this software and

documentation. We may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

Page3 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Page4 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Table of Contents.

L INTRODUCTION. ...ttt ittt ettt ste et s e st esaeesbees eesteesseessessessesssessenss seesbesssessensteessesasesssesss sestesssesseessns 7
1.1 ACKNOWLEDGMENTS «.ttuuttttueettuettueeetuaeameesuaeesnnaeeansasanneetaeanesnsasstnaeesnsassnnestnnannsssnsesssneessnsessnnsessnsennsesneesenn 8
2. THE UPL PACKAGE. ...ttt ettt st sttt e st estests +ateesteestessesseesseesbeeates sheestessbesstesssessseseessees besessses 9
2.1 RUNNING UPL ON THEVIC-20. ... ittt ettt e ettt e e e et e et e e e e ettt eeeeetaa e e e eetan e saa e eeertaneeeeerannnnss 9
200 Nt R o = Vo [To I o0 4 N 1= o1 TSR 9
2.1.2 Using UPL With @ VIC-20 EMUIALOL.........cciiiiii ettt e e e e e e e e e e e ee et e e e e e e e e e e aaeaae e e e e e e s eneeeeeeeeees 9
B . THE UPL LANGUAGEottt ettt st st s e e steets aeteesseesseastesbesatesseestes sabesssesssesseestesstenstennses sbeens 11
B DENTIFIERS tttuuteetettiteetetteteetsstaesttaeesetaaaeeestanaesestanssanseessssasessssansesssnnssstanseesestanseessstansessnnsesssnsensesssnseneens 11
T2 B N I = LSS PPN PPPPRR 11
TG I = = Lo 1T =Y Y APPSR PO UPPPPP 11
G TR Tt R @00 153 = £ 12
R I A £ 1 = o] (=PSRN 12
B4 ST ATEMENTS. tettuueeetttueeestttuaeeesstaeesstnaeesestanaeeeessanaessnntestansaesestansaessstansaesansssssnseesssstnseessssanseennsessestnnsesssnnnnss 13
3.4.1 ASSIGNMENT STAtEMENL.......eeiiiiiiiiei e eeee s et e e s s bbb e b e eaeeeesmmsnnsnssnnsnnseesnnnnneeereeen 13
I [o Tl =Y (=] 1 (=]) OSSPSR 13
R o [1o = 1 (=] 1 =] | U 13
BT o TU L o 10 1 S = 1= 1 [SO 14
R 1= (o I3 =1 1= 1 = 0 OO SRR 14
B B G o = S =1 =] 11T 4 14
3.5 ST RUCTURED STATEMENTS. . tttttuutetttttueesesrtneennseetsstateessstateessstanansaresssstnaeeesssaaeessssunentnsesssstaneessssnnneeessnnans 15
R T W0 Ao 11] o To 10T o RS r= 1 1= 1 4= 4 | AP 15
ORI |) = L (=] 1 = 0 APPSR PTUPPPPR 15
BT ST B (=T == LS == 1 1=) PPN 15
R I T a1 LR = 1 (=1 g 1= o) PP PP PP PRRPPPN 16
3.5 P RESSIONS . vt uuteitttteeeetttteeesesaeesstaeesesttaeessstanaessnntestansaesestansaessstansaesansssssnsaesssstneessssanseennsessestnnsesssnnnnss 16
3.7 SUBROUTINES .tttuueetettuneeeeettuneeessnsestanieessstaneessstanseesanssssuneesssssneessssuneennsesssstansesssstnnsesssstnnsanteeeesssnseeeesrnns 17
G TR A A o (o Tod =T U YOO U TR 17
T 7 = ¥ 1 Tox 1 o] s RSP PPUPRRPIR: 17
3.8 ADVANCED STATEMENTS. «.ttttuuteetettunieetestuneesaneeesttaaesssttaeessstuteennsesssstantesssstantesssstameaneeeestnnieeseesiiieeeesrinmennns 18
1 78S 20 Ao o (o TS = 1 =] 1 =T 4 S 18
IR S T2 = ¢) = | =1 1011 oY 18
3.8.3 pUSh aNd POP STAtEMEILS.......cuuuiiiiieiii e eeeee e e s e e e e seeeeesmmnnsnnrnnrenrrnnneneeeees 19
IS ol (== T = 1 (=11 1= | PP PO OO PPRPPPPN 19
B TR 2R T 0 0= 0 1 - 19
RS N o= 1 IS = 11T 1 1=) AP 20
RS I A 1= (o A IS = 1 =] 0 =T L U OUO PSSR PUTPR 20
3.0 COMMENT Sttt eetetteteetett et eetettae st e eessatt e eesstaaaaessansastansaessstansaessstansassansesssnnaeeesssnneessssnneennsessssnnnsessssnnnsenen 21
B0 EXAMPLE. ttuuueeittttiee ettt e e e e ettt ee bt e e e ee bt e e e e e taa e e e e et ae e s aa e eeeetaa e eeeetaaaeeettee b eetee b aeteetanaetnnaaeeranaeeraraaaaeeern 21
B0 700 O B0 Y 101] o= 1 o T 1= o= OO 21
4, IMPLEMENTATION: COMMODORE VIC-20.......oti ittt ettt evaesteestes stvesseesseestesssessesneesans 22
.1 PACKAGE CONTENTS 11t etttttuteetettueteetsstetanaeeesstuaeessssnaeessstaantaeeessstneesssstnaeessssnantanseesestsnieesestnnieesestansssnnens 22
L 1=\ = N T PRSPPI 22
0t N 1 22
R = =T (o I (=) 4 PR 22
G S Y- NV (=4 V5 23
S N 1 PP PRSPPI 23
2T 1Y o To 13 Y/ 23
R B =] =Y (TP PSPPSR 23
N A | 11 = o RS 24
R O 1 1| PSP PRTUOPPRRR 24
A T @] o] [= o B =T- 1V =P 24
i O =) =T o U | =T 25
o I R o 2] o =PRSS 25
2.3 COMPILING. «u1etettuuteetettunteesestunanaaessestaaessssaaaesssssnantansaessstansaessstansaessstansssnssesssssnseesssssnseesssnnssssnnsessssnnneesesnnn 27

Pageb of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

== T] =13 27

N R @ 10| o) 1Y, =T T YA =T o (o P PRRPREE 28
R = =] = L] = 1S 28
T ISV £1 (=] 1 4 T = o] T 28
T = (V10 1] 4 LY = € (o] £V PO UO PR 29
T o a] o] L= TN = o £ 00T -SSP 29
4.6 MEMORY CONFIGURATION. «.ettuueettrtuneeeeettuaeessntestanaessstanaessstaneesansssssuaeessssuateessstnseennsesssstanresssstaneessssannnns 30
4.7 LOOK IMA! INO COMPILER! .11 itteitieiti ettt e ettt e et e e e e e et e e e e eett e eee s s e e esta s eesastanseesa st sassnnsessansaeeeetaneeseertnneeennnns 31
4.8 ADVANCED FEATURES ...t iiittiiieeiitt et e ee ettt e eet e e e ettt aeeee s s ttaeese st taetaa e eeeesaaneeestanneasssnssstnssesesstnnseessstnneessnnsesrans 32
4.8.1 SUPPrESSING OVEITIOMcieiiii e eeee e e e s s b e b e e eeeeesmmnssnssnssenseesnnnneeeereeen 32
£, BUGS. .otttiiiiitii e et e ettt e ettt tee et e e ettt e e ettt eeeeta—tettaeeteataeeteataeetan ettt ttaeeetttaaeettttaaaann et ertanaaeeantnaaerrrrnanns 32
L O Y Y 1= I =PSRN 33
4,10.1 VIC-20 MELEOI SNIEBL.. ... iiieiiiii et e s e e e e e e e e e ee s e e e e e eeee s ra b e e eeeeeas 33
B.IMPROVEMENTS. ..ottt ettt ettt st steebees eesbeesseesesssesseesbeesbees sesbeestesstesstesssesssesseesss sensesseesnns 36
B. EMULATORS. ...ttt ettt ettt st s eestees besaeesseesseessesbesssesseess seenbesssesseestesstenstesasesss sestesssesnsesnsesses 38

Page6 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

1. Introduction.

Be afraid. Be very afraidDid you know that in 1983 the Commodore VIC-20 had a full-
blown Pseudo-Pascal compiler? It generated native 6502 machine code. Although the
compiler was slow and had the unfortunate limitation of byte variables, the unoptimised
machine code it produced was very fast. The language was dubbed UPL; “Utility
Programming Language.” You could do anything in UPL you could do in assembler. UPL
was never released commercially. By 1984 the VIC was well on its way to extinction, being
overtaken by the vastly superior (and incompatible) Commodore 64.

Many years later, nostalgic for the arcade games of the good ‘ole days some talented
programmers have written VIC-20 emulators. These emulators allow old software written
for the VIC to be run on nearly any modern PC. (See the appendix for a list of emulators
and where you can download them.)

So now nearly fifteen years after | wrote UPL I'm able to rerelease purely as a historical
curiosity; An example of what you can do on a limited machine with limited resources if
that’s all you've got. It's also a rebuttal to the revisionists who view think the VIC was a
practical joke by Commodore. The UPL Compiler itself ran entirely within the 16Kb
expansion cartridge. The VIC’s unexpanded 3.5Kb was left alone for storage of the
compiled UPL programs and the runtime library. The expanded VIC was considered the
development system, and the unexpanded VIC the target system for UPL programs. This
document is largely taken from the original 1984 manual, typed up on a DEC KL-10
mainframe! Emulator hints are printed in blue.

| wouldn’t recommend developing anything new with UPL. You could do much better with
a 6502 C cross-compiler. Then again you could do better still with a Pentium native
compiler.© However if you want a laugh you can get it to say “Hello World” and look at
the arcade game listed beginning on Pzgje(Yes, It really does work.)

If you get a kick out of UPL then vistww.kdef.com/geek/vic. I've loaded up the best of
my old programs, including some still-playable arcade games and adventures. Enjoy!

Brendan Jones.

April 12, 1998.

E-mail: bj@kdef.com

Web: www.kdef.com/geek/vic

Page7 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

1.1 Acknowledgments.

» The authors of the many VIC20 emulators for saving the VIC20 and its software from
oblivion. (They're listed on Padgs.)

* Nikolaus Strater (nstrater@mcmail.com) for the VTR VIC-20 to PC tape loader.
Nikolaus says the number of people wanting to use this program worldwide must be
frighteningly small; perhaps 2-3. Make that 4!

» Jeff Minter (Author of Gridrunner) for starting the ball rolling by freeing up his own
commercial VIC-20 software.

Pages of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

2. The UPL Package.

The UPL package consists of three programs. These programs have different names on the
1984 tape and 1998 emulator release of UPL.

File. Description.

Bootstrap. The UPL Boot program starts the loading process. It configures y
VIC moving the video memory to the same location it appears on
unexpanded VIC. You'll thus be able to develop UPL applications
using the same memory configuration as your target system. The
program then loads the UPL Runtime library and then loads and r
the UPL Compiler. (On the original 1984 tape version of UPL thig
program was called “UPL BOOT.B16”. On the 1998 rerelease for
emulators it is now called “UPL-BOOT.BAS.”)

Runtime Library. | This is the UPL Runtime Library. Itis a binary file loaded betweel
memory locations 4105 and 5008, inclusive ($1009 and $1390
hexadecimal). This file must be present for any UPL programs to
You can load the runtime library without the boot program simply
typing the BASIC command LOAD “UPLRTIME.BIN” or LOAD
“RUNTIME.OBJ". (On the original 1984 tape version of UPL this
program was called “RUNTIME.OBJ”. On the 1998 rerelease for
emulators it is now called “UPLRTIME.BIN.”)

Compiler/Editor. | This is the UPL Compiler and Editor. Use this program to create,
and compile UPL programs. (On the original 1984 tape version o
UPL this program was called “COMP/EDIT.B16”. On the 1998
rerelease for emulators it is now called “UPL-TAPE.BAS.”)

2.1 Running UPL on the VIC-20.
2.1.1 Loading from Tape.

The UPL Package requires a VIC-20 with at least 16Kb of expansion memory.
Turn your VIC-20 on. Insert the UPL Package cassette into your VIC-20’s tape drive.
Holding down the SHIFT key tap the RUNSTOP key. You will be asked to press PLAY on

your tape drive. The full UPL package will be loaded automatically. When loading is
completed you will be presented with the UPL development menu.

2.1.2 Using UPL with a VIC-20 Emulator.

Page9 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You may run the UPL Package on any modern microcomputer with a VIC-20 emulators.
Emulators are available for DOS, Windows, Unix and the Amiga. Refer to the Appendix
for a list of available emulators.

With the PCVIC emulator you may load UPL with a single command in DOS:

PCVIC UPL-TAPE.PCV

With the V20 emulator you may load UPL by first typing in DOS:

V20

Then select the “load state file” option from the “machine” pulldown. Enter the name
“UPL-TAPE.V20". UPL will then be loaded.

To load UPL on any other emulator follow these instructions:

1. Load and run the program “UPL-BOOT.BAS".

2. It will recongfigure your VIC in preparation for loading the rest of UPL. It'll ask you to
press the PLAY button on your tape drive. Of course the vast majority of emulators don't
have a tape drive. Press the RUNSTOP key on the emulated keyboard. (You'll have to
refer to the emulator documentation to find which key is acting as RUNSTOP. On
PCVIC it is NUMLOCK. On V20 itis TAB.)

3. Load the binary file “UPLRTIME.BIN".

4. Load the BASIC program “UPL-TAPE.BAS” (If you're using PCVIC you'll have to tell

the emulator to “undelete the BASIC program” after doing this).

. Type the BASIC command “RUN” and press Return (Enter).

. You should now be at the UPL menu.

. At this point we recommend taking a “system snapshot” with your emulator. You can

use the snapshot to start UPL quickly without having to go through the above steps.

~N O 01

Most emulators lack emulated tape and disk drive support. This means you must type in
your UPL programs from scratch. However it will be possible to save and run your
compiled programs separately. See Secti@®on Page4. You can also save your UPL
source code by telling the emulator to save the entire VIC-20 in a system “snapshot” file.
Refer to your emulator documentation for more detail.

Pagel0 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

3. The UPL Language.

3.1 Identifiers.

Constants, Variables, Procedures and Functions are all identified by a name. This name is
known as an “identifier.” An identifier consists of a single lower case letter followed by zero
or more lower case letters or digits. No two objects may have the same identifier.

For example:

people

counter

plan9
californiastatesalestax

3.2 Data Types.

UPL recognises only one data type; the byte. A byte may hold an integer between the
values -128 and 127, inclusive.

With a compiler option you may specify that integers the range of values between 0 and 255
inclusive is also accepted. When this happens the values between -128 and -1 are mapped
onto 128 and 255 using the principle of “two’s compliment.” (Refer to a computing text on
binary arithmetic for further information.) Even if you enable this compiler option you'll

still need to patch the runtime library to suppress overflow errors when calculating with
these larger numbers.

3.3 Program.

A UPL Program has the following form:

[constant-declarations |

[variable-declarations]

[subroutine-declarations]
compound-statement

The compound-statement is the main body of the program. It is what is executed when the
program starts running. This compound-statement must be followed by a single full-stop
(also known as a period)’* Those clauses shown in square brackets are optional. They
may be omitted if there are none to declare. Do not confuse these square brackets with the
bold square brackets of a compound statement] ¢§. The bold square brackets indicate

that the square brackets appear in the UPL source code.

Pagell of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Here is a sample UPL program:

[putln(“Hello World™;].

3.3.1 Constants.

A constant may have a value of any integer ranging between -999,999 and 999,999,
inclusive. Unlike a variable a constant’s value may not be modified outside of its
declaration. If you assign or otherwise pass a constant to a variable or an expression only
the lowest 8 bits are transferred. For example, if the a constant having a value of 259 is
assigned to a variable then the variable will hold a value of 3.

The constants declaration has the following form:

cons
{ identifier = integer-value # , } ;

The bold word cons and charactess,”™,” and “;” indicate they appear literally within the
source code. The curled braces indicate that the enclosed clause may be repeated zero or
more times, so long as a commai$ used to separate each instance.

For example:

cons
numpeople=9,
carriagereturn=13,
limit=16,
clearscreenroutine=58901,
amountowed = 64;

3.3.2 Variables.

The variables declaration has the following form:

var
{ identifier # , } ;

For example:

var
count, sum,
personé;

The initial value of a variable is arbitrary; It should not be assumed to be zero.

The variablex, y, a andp are automatically declared. These correspond (although they are
not actually) the 6502 processors registerss a pseudo-variable that is true (non-zero) if

Pagel2 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

the processor’s carry flag is set. The variableirn is automatically declared in functions
to receive the value return as the function’s result.

3.4 Statements.
3.4.1 Assignment Statement.

An assignment statement assigns an expression to a variable. Assignment statements have
the following form.

identifier = integer-expression
Here are some examples:

numpeople=35
count=count + 1
X =2 *(numberin -y) +k /6

Spacing between the elements of an expression are ignored.

3.4.2 inc Statement.

Theinc statement increments the variable of a variable. That is, it adds one to it. If the
variable is 127 then the value will wrap around to -128. Here is the form iofcthe
statement:

inc identifier
For example:

inc count

3.4.3 dec Statement.

Thedec statement decrements the variable of a variable. That is, it subtracts one from it. If
the variable is -128 then the value will wrap around to 127. Here is the formdgcthe
statement:

dec identifier

For example:

dec count

Pagel3 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

3.4.4 put, putln Statements.

The put andputln statements both print the value of an expression or a string of characters.
To print an expression as an integer follow it by the hash char#tter 6 print it as an

ASCII character omit the hash. Here is the form of the put statement. The only difference
the put andputin statements is thg@iutln finishes by printing a newline character.

put ({expression[#]| character-string #,})
putin [({ expression [#]| character-string #,})]

The vertical bar indicates that each clause may be eittepression or acharacter-
string.

For example:
put(33) <prints ASCII character 33; “I">
put(33#) <prints the number 33>
put(“hello there™) <prints “hello there”>
putin(“hello there”) <prints “hello there " and goes to a newline >
put(“The answer is ", 10+15%#) <prints “The answer is 25" and newline>

3.4.5 field Statement.

The field statement specifies the number of characters that shall be used to print a number.
If this the field is set to zero, then only the minimum number of characters needed to print
the number will be used.

field (expression)
For example:
field(0); put(5#, 12#); field(10); putin(44#, -127#);

For the purpose of illustration we’ll use a dot to represent each space in the output:

Note in the above example we use a semicojbto“separate the different statements.
Statements appearing in a list (except for structured statements, discussed later) must be
separated by semicolons.

3.4.6 get Statement.

Theget statement gets values from variables from the input device (usually the keyboard).
If the variable name is followed by &*it will be retrieved as an integer, specified one per
line. If the variable name is not followed by# then a single ASCII character will be
fetched from the input device and stored in the variable.

Pagel4 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

get ({ variable-name [#]#,})

For example:
get(key) <gets a single character and stores it in variable key>
get(count#) <gets a single number and stores it in variable count>
get(x#, y#) <gets two numbers on two lines; one for x, one for y>

3.5 Structured Statements.
3.5.1 Compound Statement.

A compound statement groups zero or more statements together as a single statement.
Each statement is separated by a semicolon. The last statement should not be followed by &
semicolon.

[{ statement #; }]

For example:

[putin(*Another one bites the dust”); inc count]

3.5.2 if Statement.

Theif statement lets you conditionally execute one or two statements. eifghession is
true (non-zero) then thden statement is executed. If it is false then thkse statement
is executed instead.

if expression then statement [else statement |

For example:

if count = 2
then putin(“two”)
else putin(“it is ”, count)

3.5.3 repeat Statement.

Therepeat statement repeatedly executes a list of statements uetidpaession becomes

true (non-zero). Theepeat statement is post-tested, which meansttgression is

evaluated after the statements have been executed. This means the statements are execute
at least once.

repeat { statement # , } until expression

Pagel5 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

For example:

count = 1;

rep eat
putin(count);
inc count

until count = 11;

3.5.4 while Statement.

Thewhile statement repeatedly executes a statement urd@ession becomes false
(zero). Thewhile statement is pre-tested, which meansettygession is evaluated before

the statement is executed. If the expression begins false then the statement will not be

executed even once.

while expression do statement

For example:

count = 1,
while not(count = 11) do

[

putin(count);
inc count

]

3.6 Expressions.

Expressions may be made of the following operators.

Operator.

Description.

not expression

Returns the logical negation of the expression.
eg. not O returns -1, and not -1 returns 0.

expression and expression

Returns true if both expressions are true.

expression or expression

Returns true if either expression is true.

expression = expression

Returns true if the two expressions are identical.

expression * expression

Multiplies two integers together.

expression + expression

Adds two integers together.

expression - expression

Subtracts the second integer from the first.

expression / expression

Divides the first integer by the second, returning a whole
number.

expression ! expression

Divides the first integer by the second, returning the
remainder.

- expression Returns the arithmetic negation of an integer expression.
eg. -2
pos factor Returns true if a factoe 0.

Pagel6 of 39

© Brendan Jones, 1984, 1998.

12/04/98 19:28

neg factor Returns true if a factor < 0.

zero factor Returns true if a factor = 0.

UPL represents true by the value -1 and false by the value 0.

The usual operator precedence is applied. From strongest to weakest precedence these are

and, or

*l /l !

° +’ -

not, neg, pos, zero

Brackets may be used to override operator precedence.

3.7 Subroutines.

A UPL program may have any number of functions and procedures.

3.7.1 Procedure.

A procedure is a subroutine that does not return a value. It may be called from any place a
statement may be called. Procedures do not have any parameters, but they may access
constants and variables.

Here is the form for a procedure declaration

proc identifier ; compound-statement ;

For example:

proc boxofstars;

[putln(“**********n).
pUtIn(“* *n);
putln(“**********n);]

3.7.2 Function.

A function is a subroutine that takes a single parameter and returns a value. It may be called
from within expressions.

Here is the form for a function declaration

func identifier (identifier) ; compound-statement ;

Pagel7 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

The seconddentifier is the name of the temporary parameter variable. This variable must
have been previously declared. The result of the function is passed back in the
automatically declared variabieturn.

For example:

func mult2add3(value);
[return = value *2 + 37;

Functions may be recursive. That is, they may call themselves directly or indirectly.

3.8 Advanced Statements.

3.8.1 goto Statement.

The goto statement jumps from anywhere within a program to a label.
Here is the form of a label, where integer is a number between 0 and 999,999.
integer :
Here is the form of a goto statement, which jumps to the specified label.
goto integer
Avoid gotos that jump out of or between subroutines. Such jumps skip code that
subroutines use to set up and then clean the program stack. Skipping such code will in most

circumstances cause the program to crash.

Gotos to a label in the same subroutine or in the main program block are perfectly legal.
They can however produce code that is difficult to follow.

Caution: Improper use ofjoto and labels can cause your program to crash and the
computer to lock up.

3.8.2 err Statement.

By default when UPL detects a runtime error (such as an attempt to divide by zero) it prints
an error message and halts execution of the program. You may however direct UPL to jump
to a label within the program to handle the error. Since this is in effect a goto the code you
jump to will be responsible for cleaning up whatever has been left on the program stack.

err (integer | off)

err off instructs UPL to handle runtime errors in the default manner.

Pagel8 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Caution: Improper use oérr can cause your program to crash and the computer to lock up.

3.8.3 push and pop Statements.

UPL maintains its own data stack separate from the processor stack. The data stack is used
internally by UPL to evaluate expressions. You may also access it the push and pop
statements, using it as a temporary place to store data.

push expression
pop variable

push pushes an expression on the data stpdp retrieves it. Any elements ygush on
the program stack within a subroutine must be popped before leaving it. You must not
attempt tgpop more values than you pushed.

For example:

func fourthpower(number);
[push temp;
temp = number * number;
return = temp * temp;

pop temp;]

Caution: Improper use opush andpop can cause your program to crash and the
computer to lock up.

3.8.4 clear Statement.

The clear statement empties the UPL data stack.
clear

The only situation that you may want to use this statement is if you are implementing your
own runtime error recover handler.

Caution: Improper use oflear can cause your program to crash and the computer to lock
up.

3.8.5 mem Array.

mem is an array that gives you access to the the computer's memory. You may assign a
value tomem, or use it to peek into a memory location from within an expression.

Pagel9 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You may assign an integer expression to the memory loaafifieet + page * 256 with the
following form:

mem (offset, page) = expression

You may peek into the memory locatiofiset + page * 256 with the following
expression:

mem (offset-expression, page-expression)

For example:

number = mem(250, 0);
mem(250, 0) = 10;

Caution: Improper use ofnem can cause your program to crash and the computer to lock

up.

3.8.6 call Statement.

call constant [with reg |
call integer-address [with reg |

This calls a machine language subroutine at the specified address. If the keyitiords
reg are specified then the values of the automatically-declared vanghblea andp are
moved into the corresponding 6502 processor registers befaralthand their new values
replaced afterwards.

Caution: Improper use of these statements can cause your program to crash and the
computer to lock up. In particular when uscegl with reg form that you don’t

accidentally set the 6502 into decimal mode vigpthegister. You can guard against this
by forcibly clearing the decimal bit before making tal with reg; p=pand 119

3.8.7 mach Statement.

mach ({integer #,})

The mach statement inserts the specified byte integer expressions directly into the 6502
processor instruction stream. These integers must be between 0 and 255, inclusive.

Caution: Improper use of this statement can cause your program to crash and the computer
to lock up.

Page20 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

3.9 Comments.

Comments may appear in a UPL program between adjacent symbols (ie. identifiers,
keywords, numbers, character strings and single characters). Comments begin with an
opening less-than sign and close with a greater-than sign. They may cover multiple lines.
Comments may not be nested.

For example:

< This is a comment. >
< And so

is this!
>

Note that UPL does not implement traditional comparison operators sgeh &ou can
however emulate them using bit operators anghtieandneg functions.

3.10 Example.

3.10.1 Multiplication Table.

< This simple example prints a multiplication table. >
var

factor, index;
[

putin(“Multiplication Table.”);

putin;

put(“Type in a factor: ");
get(factor#);

field(4);

index = 1,

while not (index = 11) do
[
putin(factor#, “*”, index#, “=", factor*index#);
inc index
]

].

Page21 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4. Implementation: Commodore VIC-20.

4.1 Package Contents.

See SectioR.1on Page for a list of Package contents and loading instructions for the
VIC-20.

4.2 The Menu.

The menu appears when you start the UPL compiler and editor. You may use the
commands on the menu to create, edit and compile UPL programs. You may also save then
on tape.

Upl compiler/editor
16-Jan-84 v0.1

New Compile
Read text Save text
List Modify
eXecute Insert
Delete Object save
Quit

?

To invoke a command type the capitalised letter within its name and press enter. For
example, to create a new program type “n” for “New”. To execute a program type “x” for
“‘eXecute.”

(An exception to this is the “Insert” command. It expects you to follow the letter “i” with
the line number you wish to insert after. For example, “i0” will begin insertion at the
beginning of the UPL program. Type “@” on a single line to end insertion.)

4.2.1 New.

You will be asked if you are sure. If you answer ‘y’ then your current program is lost and
UPL restated.

4.2.2 Read text.

This loads the saved source code of a UPL program from the tape device. On invoking this
command you will be asked if you are sure. If you reply ‘y’ your current program will be
lost. You shall then be asked for the filename of the UPL program to load from tape. If you

Page22 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

hit return this will default to “???”. Whatever you type the extension “.upl” will be added.
UPL will then search the tape for and load the specified file.

To abort the search press the RUNSTOP key, enter the BASIC command “RUN” and press
Return (Enter) to restart UPL.

Emulator Hint: This command will not work on VIC-20 emulators lacking tape emulation
(just about all of them). Instead you should use the emulator’s “snapshot” function to
restore a saved system state, which will include @Rdyour UPL program. (See the
“Save Text” Command below.)

4.2.3 Save text.

This saves your file on tape. You will be prompted for a filename as described in Section
4.2.2 The UPL program is kept in memory after saving so you may continue working with
it.

Hint: It is a good idea to save your UPL program regularly, in case you accidentally lose it

or your computer crashes taking your program with you.

Emulator Hint: This command will not work on VIC-20 emulators lacking tape emulation
(just about all of them). Instead you should use the emulator’s “snapshot” function to save
the system state, which will include URhdyour UPL program.

4.2.4 List.

This command lists your program. You will be prompted for the starting line number. If
you simply press return this will default to the first line in the program. You will then be

asked if you want the lines to be numbered. (Type ‘1’ to number them, or ‘0’ to list them
without line numbers.)

Once the listing UPL will pause on each line. Hold the F7 key down to step through the
listing. Press the DEL key to halt the listing.

4.2.5 Modify.

This asks you for the number of the line you wish to modify. The line will then appear, and
you will be invited to type a new line that shall replace it. You may use the cursor keys to
edit up and change it directly, or you may type a new line from scratch. If you decide not to
change it enter a line containing only the at-character “@".

4.2.6 Delete.

Page23 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You will be asked a range of lines to delete. The lines will be deleted from the first line you
specify upto but not including the last line. For example, “4,9” will delete lines 4, 5, 6, 7
and 8. If you ask to delete a large number of lines you will be asked if you are sure;
Answer 'y’ to continue the deletion.

4.2.7 Insert.

The Insert command expects you to follow the menu letter “i” with the line number you
wish to insert after. For example, “i0” will begin insertion at the beginning of the UPL
program. Type “@” on a single line to end insertion.

For example:
Upl compiler/editor
16-Jan-84 v0.1
New Compile
Read text Save text
List Modify
eXecute Insert
Delete Object save
Quit
?10
< An example program. >
putin(“Hello world™)
@
?

4.2.8 Quit.

This exits UPL and returns to BASIC. To return to UPL with your program intact type
“GOTO 15” and press Return (Enter). This should be done immediately, less you
accidentally clear the UPL compiler/editors variables and with them, your UPL program.

4.2.9 Object save.

You may only choose this command after successfully compiling your UPL program. The
command saves the object code version of your program (also known as the “executable” or
“binary”). This is the runnable version of your UPL program.

You will be prompted to press RECORD and PLAY on your tape device. The object code
version of your program will be saved on tape.

Page24 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

You will be asked if you want to verify the save (to make sure there are no media errors). If
you want to verify the object code then press STOP and REWIND on your tape to return to
where you started saving the object code. Then answer ‘y’ to verify. You will be prompted
to press PLAY on the tape device. The object code will then be verified. You will be
alerted if there is an error. If there is try saving again with a different (newer and/or better)
tape. If you did not elect to verify the object code then these steps will be skipped.

Emulator Hint: This command will not work on VIC-20 emulators lacking tape emulation
(just about all of them). But depending on your emulator you may be able to save the object
code directly to disk with the emulator anyway. When UPL finishes compiling it will tell

you the location of object code. For example [5009 141 5140] says that the object code is
between memory locations 5009 and 5140 inclusive, and is 141 bytes long. (You can run
your program by going “SYS 5009” from BASIC). In hexadecimal this memory range

covers between $13EB and $1414 inclusive, and is $8D bytes long. If you use your
emulator to save a binary file covering these memory locations then you will have saved
your program. Additionally the UPL runtime library (which you need to run your compiled
program anyway) occupies memory locations $1009 to $1390 (4105 to 5008 decimal). If
you save the entire memory space from $1009 to (in this example) $1414 inclusive then you
will have saved your prograandthe runtime library in a single package. You may then

load this file on any VIC or VIC emulator and type “SYS 5009” from BASIC to run you
program. Could it be any simpleg?

4.2.10 eXecute.

You may only use this option after having successfully compiled your program. On

invoking this command you will be asked if you are sure. If you reply 'y’ then your

program shall be run. If there is an error (eg. no object code is present) you will be returned
immediately to the menu.

Otherwise your compiled UPL program shall run. It's output shall be surrounded by lines
saying “running” and “run ends.”

4.2.11 Compile.

The 6502 processor inside the VIC-20 cannot execute UPL directly. We must translate it
into 6502 machine code which the processor can run directly. This is the function of the

“Compile” command; To take your UPL program and convert it into 6502 machine code.

We can then use the “eXecute” command to run the generated 6502 machine code.

When you invoke the command option you'll receive the following prompts. Each prompt
shows its default value in brackets. By pressing Return (Enter) without typing anything else
you'll take the default value. Otherwise type the value you want and then press Return
(Enter),

default options(y)? If you want a normal compilation with all the default values
simply hit return. Otherwise ‘n’.

Page25 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

above correct(y)? Hit return to start the compilation. Otherwise ‘n’.

If you did not select the default options you’ll have an opportunity to review and chany
compilation options:

code start(5009)? Beginning at what memory location (expressed in decimal
shall the generated 6502 machine code be inserted into
memory? The memory area between 5009 and 7679 is
guaranteed to be free for your compiled UPL program. Ify
specify another memory area make sure it is not already b
used by something else.

code limit(7679)7 The last memory location in the memory area that may be
_ to store your compiled UPL program.
stack checking(y)? The 6502 processor contains a small stack of only 256 byt

If you're calling a lot of subroutines it's possible to overrun
this stack, causing your computer to crash. Selecting this
option will insert code that checks the stack during the stai
each subroutine call to make sure there’s still some room.
This additional code will however slow down your program
little.

integers >127(y)? Normally UPL will only permit integers between -128 and
127. If you answer ‘y’ to this option it'll also allow integers
between 128 and 255. It does this by mapping the range -
to -1 onto 128 and 255. So for example -1 and 255 are
considered to be the same number. (Actually they are by
law of two’s compliment. See a computer textbook on bini
arithmetic for more details.) If you can handle this concep
then answering ‘y’ to this option will give your UPL prograr
permission to use the full range of byte values in the UPL
source. It doesn't disable overflow detection.

auto setup(y)? Normally when at the start of a compiled UPL program the
compiler inserts the following statementsar; err off;
field(0); . These set up the UPL runtime library. If you ty
‘n’ these statements will not be inserted. You should mak
other arrangements, since without at the very least clearin
UPL data stack your computer may crash.

terminating If you type ‘b’ when your UPL program finishes execution

opcode[b/r](r)? it'll execute a 6502 BRK (break) statement. This clears th
screen and returns to the BASIC command line. If you ust
then your program will be terminated with a 6502 RTS (ret
from subroutine) instruction. This returns it to where you |
it; whether it was from a SYS call on the BASIC command
line, or a SYS call from within a BASIC program. On
returning BASIC will pick up where it left off.

Page26 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4.3 Compiling.

Here is some sample output from using the compiler:

default options(y)?
above correct(y)?
compiling

pass 1

'p;éss 2

éuccessful compilation
[5009 141 5140]

The compiler makes two passes through the source code. The first pass checks for errors
and calculates the addresses of the objects in the program. The second pass generates the
machine codé. A dot is printed everytime a group of lines is processed. This gives you an
idea of the relative speed and progress of the compilation.

Those numbers at the bottom tell you the location and size of your program expressed in
decimal (base 10). They are in the following form:

[start-address size-bytes last-address |

For example, [5009 141 5140] says that the object code is between memory locations 5009
and 5140 inclusive, and is 141 bytes long. So long as the UPL runtime library is loaded,
you can run your program by going “SYS 5009” from BASIC.

4.4 Errors.

If the compiler detects an error during compilation it’ll halt and report the error. For
example:

var
index;
putin(“hello™)]. < Note we left the first “[" out >

This will report the error thus:

compiling
pass 1

error 4 in line 3
putin<<<
H[H

expected.

In hindsight, if UPL had been designed so it did not hayeta statement and used a different form for ¢he
statement then UPL could have been implemented as a single pass compiler. This would have cut compile time in
half!

Page27 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Hputln”
is not allowed here.
continue(y)?

See Sectiod.5.10n Page8to see what compilation error “4” means.

The “continue(y)? " is the compiler asking you if it should continue trying to compile the
program, even though a fatal error has been found. If you answer ‘y’ then UPL will
continue looking for errors. It'll terminate at the end of the first pass so you may correct the
errors and try agaif.

4.4.1 ?0ut of Memory error.

If the UPL compiler halts with the BASIC errardut of Memory error " then your UPL
program is too complex for it to parse. This can happen if your expressions are very deeply
nested (eg. have too many brackets inside brackets). You can avoid this by splitting such
complex expressions up into simpler expressions using simpler variables.

You can return to the menu with your editor intact by typing the following on the BASIC
command line:

print si: goto 15
Do this immediately, otherwise you might enter a command that causes BASIC to lose your
UPL program.

4.5 Errors.

In order to preserve memory, the VIC-20 implementation reports errors as numbers.
(Having full error descriptions in the compiler/editor would have taken room away for
storing your UPL program.) You can look up errors in the following sections.

4.5.1 System Errors.

System errors are generated when you do something that doesn’t make sense. For example
trying to insert a negative line number.

System Error Codes.
0. Impossible request. eg. Inserting a negative line number.

1. No more memory space for source program (150 line limit).
2. Object code save got a verify error.

2 Apparently UPL version 0.1 did not implement error recovery. A pity; With UPL’s slow compile time it'd be much
better to try and find all the errors in a single parse.

Page28 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4.5.2 Runtime Errors.

A runtime error is reported when an error is detected while your compiled UPL program is
executing. For example, runtime error “4” would be reported with the following message.

Rerror upl 4

You can return to the menu with your editor intact by typing the following on the BASIC
command line:

print si: goto 15

Do this immediately, otherwise you might enter a command that causes BASIC to lose your
UPL program.

Runtime Error Codes.

0. UPL Data Stack overflow. Too much data has been pushed on the UPL Data Stack. This
could be because of a complex expression, not enough space being left to evaluate a
simple expression, too many functions being called at once putfte statement being
overused.

1. Additional or subtraction overflow. An expression has resulted in a integer that exceeds

the allowable range of byte values.

. Division or modulo (remainder) by zero error.

. Multiplication error. An expression has resulted in a integer that exceeds the allowable

range of byte values.

. Bad field width. The field value must be between 0 and 80.

. UPL Data Stack underflow. Too much data has been popped off the stack. This can be

caused by overusing tip@p statement.

6. Processor stack overflow. The 6502 processors stack has or is about to overflow. Too
many functions or procedures have been called at once.

wnN

(G2l

4.5.3 Compile Errors Codes.

CompileError Codes.

0. Program is incomplete. Did you forget the terminating dot after the main compound
statement? Perhaps the closing “]” on a compound statement? Maybe you forgot a
closing double-quote on a character string? etc.

1. ldentifier or label declared twice.

2. Too many identifiers or labels declared.

3. This identifier was not declared.

4. Something was expected, but not found. Perhaps the previous statement did not have a
terminating semicolon? Check the previous line.

5. Too many structured statements nested inside one another.

6. Label does not appear within the program.

7. Label is expected here.

Page29 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

8. Label of “off” expected here.

9. Machine code integers must be between 0 and 255, inclusive.

10. “inc” or “dec” may only be used on variables.

11 You may only “call” an integer or constant.

12. Only variables may be got with “get”.

13. Not enough memory to store the compiled program. When compiled your UPL program
generates too much object code to fit into the allocated memory space. Try simplifying
your program, and using common code where possible. If worst comes to worst you
can write your program in modules located in different parts of memory and have them
call each other. But try simplifying your program first.

14. A constant is not allowed here.

15. Integer exceeds 127. (You may turn this off with the “integers>127" compiler option.)

16. A function is not allowed here.

17. Constant in expression exceeds 127. (You may turn this off with the “integers>127"
compiler option.)

18. Factor is expected. A factor is the simplest element in an expression. Factors may be a
variable, an integer, a function call, a character string in “put” and “putin”, the “mem”,
“pos”, “neg” or “zero” functions, “c” (carry), an expression in (round) brackets or
starting with “not”. In other words part of an expression was expected but not found.

19. Only variables may be popped.

20. Integer expected.

21. A function parameter must be a variable.

22. ldentifier expected.

23. Integer is too large. Must be 999,999 or less.

24. Identifier not declared.

25. lllegal start of a statement. A statement can’t start with that!

26. Identifier not declared.

27. lllegal separator or statement start. A statement separatorstatement should be
here, but isn’t.

4.6 Memory Configuration.

You only need to read this if you're calling machine code other than that created by UPL or
poking the memory array.

Do not use the following memory locations (specified in decimal): 251-255 or 673-767
(both used by the UPL runtime library), 4069-5008 (the runtime library itself) or of course
the area where the compiled UPL program is stored (the range reported at the end of
compilation).

Further note that under UPL a VIC-20 with 16Kb+ of expansion memory is reconfigured to

look like an unexpanded VIC; the target system of the UPL system. Screen memory begins
at 7,630 decimal and colour memory at 38,400.

Page30 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

4.7 Look Ma! No Compiler!

This section describes how to run your compiled UPL program without needing to load the
compiler.

As described above, UPL programs expect to run on an unexpanded VIC. Thus if you are
using a 3.5Kb VIC no changes are necessary. However if you are using a VIC with 8Kb or
more of expansion memory you must relocate video memory to the above locations. Type:

poke 36866, 150: poke 36869, 242: poke 648, 30: print chr$(147)

If you still want to load a BASIC program while your UPL program is in memory you'll
need to locate BASIC too. This’ll depend on the memory area occupied by the compiled
UPL program. The following example relocates BASIC to begin at 10,240 decimal
(memory page 40). Remember under most circumstances you won't need to do this.

poke 43, 1: poke 44, 40

Emulator note: Loading and run the BASIC program UPL-BOOT.BAS will run a short
machine-language program that moves everything into the right place, including the video
memory. After doing this it will try and load the UPL runtime library off tape. Because
most emulators don’t have tape support you'll need to hit RUNSTOP.

You'll now need to load the runtime library. Simply type the following to load the runtime
library off the UPL system package tape.

load “uplrtime.bin”

Emulator note: With most emulator you can load the runtime library directly into memory
straight off disk. Under PCVIC type [Escape][l][U] and enter the path of the runtime library
file. Under V20 load the runtime library as if it were an BASIC program. Note that not all
emulators can do this, although you could hack a way around it by converting the runtime
library so it looks like a ROM cartridge file (albeit one located at $1000-$1390, or decimal
4096-5008).

You can now load your compiled UPL program from tape. For example:

load “galaxy”

When the VIC loads a binary from tape it stores the start address in the memory locations
193 (low byte) and 194 (high byte). Accordingly you should be able to run your program
with the following command:

sys peek(193)+peek(194)*256

Emulator note: Use the emulator to load your binary file directly from disk. Since the VIC
won’t have set memory locations 193 and 194 for you you'll need to remember the starting
location (the entry point) of your compiled VIC program. For example, SYS 50089.

Page31 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

If the computer crashes then maybe you loaded the wrong program, had a tape read error,
didn’t load the runtime library or relocated video memory incorrectly.

Doing all this setup can be time consuming. To save yourself having to do this every time
you want to run the program we recommend you save a single binary file containing the
runtime library (4096-5008, $1000-$1390) and your compiled UPL program. You can then
write a little BASIC program to put on the tape before your saved binary. The BASIC
program will write and execute a short machine code program that loads your file and then
calls the entry point; usually 5009 decimal.

4.8 Advanced Features.

4.8.1 Suppressing Overflow.

It's easy to move a graphical character across the screen’s page boundary by using the carry
flag.

mem(playerlo, playerhi) = 32; <blank the shape>

playerlo = playerlo + 22; <move it down a row>

if <if carry is set>

then inc playerhi <then we need to jump to the next page>
mem(playerlo, playerhi) = 83; <redraw the shape at its new position>

Unfortunately UPL will raise an overflow runtime error wheyerlo exceeds 127. This
will happen even when the compiler option allowing numbers > 127 has been set. The
compiler option only allows those numbers in the source; It doesn’t prevent overflow
errors.

In order to disable an overflow you need to add the following code to the start of your UPL
program:

mem(135,16) = 162;
mem(149,16) =162

You may now execute the above code without any overflow errors. To reenable overflow
detection restore those two memory locations to their original values. You must do this
before your program exits, otherwise other programs using the Runtime Library will also
have overflow detection disabled.

mem(135,16) = 112;
mem(149,16) =112

Caution: Placing values other than 162 or 112 in the above memory locations will cause
your program to crash or return erroneous results.

4.9 Bugs.

UPL version 0.1 for the VIC-20 contains the following bugs:
Page32 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

* Integer -128.
Printing -128 causes a few punctuation symbols to appear instead of “-128”. Also be
aware that the negative of -128 under an 8 bit two’s compliment system is in fact -128!
» Multiplication.

Multiplications that overflow by a small amount (eg. exceeding 127 by 3) are not
detected.

4.10 Example.

4.10.1 VIC-20 Meteor Shield.

<meteor shield.

set compiler option integer >= 127 to yes.
compile time 20+ minutes.

block the meteors using | and ;>

cons
false=0,
true=-1,
meteorshape=209, <A ball>
shieldshape=214, <A cross>
cityshape=177, <Superstructure>
blankshape=32, <A blank>

homech=19, <homes cursor when printed>

clearch=147; <clears screen when printed>
var score, <current score>
shieldlo, <offset on bottom screen page of shield>
meteorlo, <screen page of meteor>
meteorhi, <offset on screen page of meteor>
index, <initialisation counter>
loop, <delay loop counter>
citydestroyed, <true when city is destroyed>
ch, <Another game? 'y' or 'n">
counter, <Moves meteor every f ifth cycle>
keytyped; <current key pressed>
func key; <Return the current key pressed>
[return=mem(197,0)];
proc delay; <Waste some time>
[loop=0;
repeat

inc loop
until loop=150];
func random; <Return a pseudo-random number>
[call 57492;

return=mem(141,0)!22;
if neg then return=-return];

proc setscreen; <Clear the screen and draw the city>
[mem(15,144)=8;
put(clearch);
index=228;
repeat
mem(index,31)=cityshape;
inc index
until index=250];

Page33 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

proc setmeteor; <Set the meteor somewhere on the screen top>
[meteorhi=30;

meteorlo=random+22;

mem(meteorlo,meteorhi)=meteorshape];

proc setshield; <Draw the player shield>
[shieldlo=206;
mem(shieldlo,31)=shieldshape];

proc movemeteor; <Move the meteor down one>
[mem(meteorlo,meteorhi)=blankshape; <Blank the old meteor position>
meteorlo=meteorlo+22; <Move it down one row >
if ¢ then inc meteorhi; <If carry then go to the next page>
if mem(meteorlo,meteorhi)=shieldshape <If meteor hit the shield...>
then [setmeteor; inc score; put(homech,score#)]) <Good! Caught by player!>
else if mem(meteorlo,meteorhi)=cityshape <If meteor hit city...>

then citydestroyed=true <City is toast>

else mem(meteorlo,meteorhi)=meteorshape]; <Hit nothing; draw at new
positon>
proc moveshield; <Move player shield>
[mem(shieldlo,31)=blankshape; <Blank old position out>
keytyped=key; <What key did they press?>

if (keytyped=21) and not(shieldlo=206) <move left?>

then dec shieldlo

else if (keytyped=22) and not (shieldlo=227) <move right?>
then inc shieldlo;

mem(shieldlo,31)=shieldshape]; <Draw shield at new postion>
proc title; <Title screen>
[putin(clearch,142,"Meteor Defense"); <Clear screen>

putin;putin;putin("type return to play");

repeat
get(ch)
until ch=13]; <Wait for return to be pressed>

proc initialise; <Initialise for a new game>
[score=0; <Reset score>

counter=0; <Reset meteor movement counter>
setscreen;

setshield;

setmeteor;

citydestroyed=false]; <City is ok>

< main program here >
[mem(15,144)=27; <Set screen colour>
mem(135,16)=162; <Patch UPL runtime to ignore overflow>

title;

repeat
< Play a game until the score reaches 100 or the city is destroyed>
initialise; <Set everything up>
repeat

Page34 of 39 © Brendan Jones, 1984, 1998.

12/04/98 19:28

delay; <Waste some time>
moveshield; <Let the player move their shield>

inc counter; <Move the meteor every fifth cycle>
if counter=4
then
[counter=0;
movemeteor]
until (score=100) or citydestroyed;

putin; putin; putin; <Put some space between the score and message >

<Give the player some feedback>
if citydestroyed
then if putin("Oh no! The meteor hit the city!!")
else [putin("You saved the city!);
putin("You are the wind beneath Wally's wings!");]

putin("play again ?");
get(ch);
put(ch)

until ch="n";

mem(135,16)=112]. <Patch UPL runtime to stop ignoring overflow>

Page35 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

5. Improvements.

The UPL Software has been placed in the public domain. You're free to modify it.

But | wouldn’t recommend this to anyone. The Compiler/Editor is written in BASIC. Due
to speed and memory considerations it contains no comments. | planned the program
meticulously on paper, | don’'t have the time or inclination to scan in those handwritten
notes. As a language BASIC is awful, and BASIC programs are practically unmaintainable.
BASIC is basically assembler with a few LEFT$()-type functions!

If you're interested in learning how to write compilers | recommend you get a decent book
on compiler design, and learn how to write a top-down LL(1) parser. Do it in a high-level
language like C or C++. You'll end up with a product that’s better, faster and maintainable.

| can’t imagine anyone wanting to write software for a VIC-20. Indeed I'd discourage it.

The VIC-20’s scant memory resources and slow processor forced programmers to write
compact and efficient code. With today’s bloatware this appears to be a lost art, but there’s
no practical reason it can’t be practised on a modern PC. If you must write a serious
application for a VIC-20 (perhaps you're an embedded systems designer who's realised
there are a lot of $5 VICs in garage sald&) recommend you find a decent 6502 C cross-
compiler with optimisation.

In 1983 as a first year computer science student writing the UPL compiler was a terrific
learning experience. With a little more time and experience | would have loved to have
written a Pascal compiler ROM cartridge that though some cheap and clever connector was
able to piggyback with a 16Kb RAM cartridge. The software churned out on the VIC

during it's short lifetime was remarkable, but with a decent development system like that it
would have been moreso. I've written many compilers since then; My latest being an
integrated database scripting language called RedScript that takes the best features of C++,
Pascal and Java and rolls them all into one. You can read about RedScript on
http://www.kdef.com.

Looking back | realise it would have been better to make UPL a 16-bit Pascal or even “C”
clone. The byte data types are very difficult to work with. UPL could have used more
fundamental data structures like arrays and perhaps structures and enumerated types. The
Runtime library should have been smaller too; what's the point in wasting a hundred-or-so
bytes on a small system with a number-input routine when the program doesn’t need it?
Similarly UPL makes no attempt at optimising its output; On a small, slow processor that’s
a luxury you can ill-afford.

After | finished the VIC-20 implementation of UPL | got and ported it to an Apple]J[. There
it received an Unix-like editor and a substantial performance boost with the Einstein Apple
BASIC compiler.

3| recently picked up a VIC-20 for $15. All | really wanted was the RF modulator, but | got the VIC-20, a decent
Commodore dot matrix printer and 1541 disk drive thrown too!

Page36 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

If | had continued with VIC-20 UPL | would have done this...

* Increased the 150 line UPL source limitation. (Easy; It's an arbitrary constant.)

» Added disk drive support. (Very easy).

» Added compiler error recovery, detecting multiple errors per pass. (Not so easy).

» Dropped labels and made UPL a much faster one-pass compiler. (Not that hard.)

« Written a smaller runtime library. (I do have the source for the original on a tape, but |
haven’'t been able to transfer it. If anyaeally wants it give me a yell.)

» Added peephole and register optimisation. (With a bit of clever coding it could be done.)

* Added simple arrays. (Thmemfunction already partially does this.)

* Rewritten the UPL compiler in UPL! (How Zen!)

Following UPL | started writing a full-blown 16-bit Pascal implementation with a friend for

the Apple. A week into this new project some guy called Phillipe Kahn came out with a
thing called “Turbo Pascal.” The rest is history.

Page37 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

6. Emulators.

At the time of writing the following VIC 20 emulators were available. Currently we
recommend PCVIC.

Emulator. Description.

PCVIC 1.14 | Author: B.W. van Schooten.
Platform: DOS.
PCVIC is my favourite emulator, because it's fast! It is a little roug
around the edges. For example, to load a BASIC program you mt
tell PCVIC first to load it, and then to “undelete” it. Fortunately
PCVIC supports a snapshot format called “PCV” which saves a lo
this mucking around.
wwwhome.cs.utwente.nl/~schooten/software/vic-20/pcvic.html

V20 Author: Lance Ewing.
Platform: DOS.
Good! Generally easy to use and better file loading interface than
PCVIC, but slower. However you'll need to rename any BASIC fil
.bin in order for V20 to see them. Debug mode could be better d
the seemingly innocuous command and netg will return you to the
emulator.
crash.ihug.co.nz/~be/vic.htm

Pfau Zeh Author: Arne Bockholdt.
Platform: Linux, Win32.
Pfau Zeh is a relatively new arrival on the VIC emulation scene. I
a nice interface, but the Win32 version is very slow on my Pentiun
Arne recommends you run this on a high-end system with a fast v
card.
Warning: At the time of writing Pfau Zeh does not include support
load binary programs such as UPUBLRTIME.BIN. While you can
hack around this it would be much easier to use an emulator that
support binary programs such as PCVIC or V20.
stud.fbi.fh-darmstadt.de/~bockhold/pfauzeh.html

VICE 0.14.2 | Author: André Fachat and a cast of many.

Platform: Unix, DOS, Amiga, others.

VICE was originally just a Commodore 64 emulator, but has since
support added for the VIC-20 and PET. One of VICE’s nicest feat
is it's integrated file support; it can simulate a tape or disk drive
attached to the emulated machine. Although VICE has been ports
DOS it currently doesn’t run under Win95.

Page38 of 39

© Brendan Jones, 1984, 1998. 12/04/98 19:28

www.tu-chemnitz.de/~fachat/vice/vice.html

VIC-201.1 Author: Paul Robson.
Platform: DOS.

members.aol.com/autismuk/emu.html

VIC-EMU Author: Pieter van Leuven.
Platform: Amiga.

ftp.funet.fi/pub/cbm/crossplatform/emulators/Amiga/vicV0.65.lha

Page39 of 39 © Brendan Jones, 1984, 1998. 12/04/98 19:28

Index.

@) O o F= U= (o1 (] SR 24
6
B502 .. 32
BRK e 26
CaAlTY. e 12, 32
Inline machine code..........ccooooeiiiiiiiiiiieeneees 20
REQISIEIS....uvviiiiii it 12, 20
RIS e 26
A
= 1Y 1 1 20
Assignment statement.............ccceeeeiiiiiieesiieenenn, 13
AULO SETUP.cceun et 26
B
BUGS. et 32
C
call statement.......ccceeiiviiiiiiie e 20
clear statement..........oveeeviieiiiii e 19
(©F0 o [T N 01| T 26
(0000 [T r= 1 o AT 26
(070] 10114 =1 01 FS T 21
Compiling UPL......oooviiiiiiiiiii e 25
Compound statement..............ceeeeiiiiieecieeeeennns 15
(70 1 1T 12
(070] 153 7= 11 £ 12
D
Data TYPES ..ccvneiei et 11
BYLE i 11
decC StatemMeNnt.......ccouiieiiee e 13
(B[] (<Y 23
E
EMUIAtOrS.....ccviieiiieeeeee e, 38
EIT StAtEMENT......vieiie e 18
Error
20Ut of MEMOIY......ccoiiiivi e 28
(07T ¢ (0] P 29
Compile time ..o 29
REIMTON ... 29
RUNLIME ... 29
=1 (o] S 28
SYSIEM ..t 28
EXaMPIE....cvvviiiiiieeiiiiiieieeee e 21, 33
[S), o U (=T 25
EXPreSSIONS.....ccvvviiiiiiiieeeeeeeieeeeiieeee e eiieeeee s 16
F
field statement........ccccoeiiiiie i 14
FIlES. e 9
10T (o 18
FUNCHION....ovii e e 17

Page40 of 39

© Brendan Jones, 1984, 1998.

G
get statement........ooovviiiii i 14
QOtO StateMEeNL.. ... 18
I
[dentifiers. ... 11
if StatemMeNt.......vveieiiiiiii e 15
INC StateMeNL........ooe i 13
INPUL. .. e 14
INSEIt...o e 24
LS 0] o] 1] o TP UPPRRP 24
INLEOEIS. ..o 11
L
LIST ettt ettt 23
LOAAING.....cceeiieieieeee e e 31
M
mach statement............cc.evvvveiiiiieemiiee e 20
MEM AITAY. ... eeeeeei e e e eeiie e e eeeee e e e e e e e e e e e e aeaaeees 19
Memory
Configuration............ccovvveviiviiiiiiree e 30
EXAMINING....ceeiiiiiieiiiiiie e e e 19
MOAIfYING .evviiiiiieeeeee e 19
PEEKING .. uiiiieeeiiiiiiiiiii e 19
[010] (] o TSP 19
Reserved areas...........cccceevvieiiiee e, 30
MEBNU. ..t 22
MOAIFY . 23
N
NEW . ottt 22
Numbers
127 11
S128 e 11
2D s 11, 26
Disabling Overflow...........ccccooviiieeiiiiiieennnnne, 32
INPUL. .. e 14
LaArge. e 26
O
ODjJECE SAVE....uvviiiii ittt 24
P
Package
FIlES. e 9
POP StAtEMENL......ccvuiiiiiiiiiie e ieree e 19
PrNtING ..o 14
PIOC .. ettt ettt e e e e e e e eeeee 17
ProCedure.........uuviiiiiiiiiiii e 17
Program........coooiiiii e 11
push statement............ccoeevvviiiiiiecee e 19
put statement...........oooeiiiiiiii e 14
putin statement.......cccoovvveeeeeiiiiiieeee e 14

12/04/98 19:28

Q
QUIL.eee i 24
RESUMING.....covviiiiiiiiiiieee e 24
R
Read teXt.......oooiiiiiii e 22
repeat statement............ooooiiiiiiiieiiiien 15
Running
Without compiler...........ooovviviiiiiiiiiieecieee s 31
Running compiled UPL..............ccoovviiiiiiiineee 25
Runtime
Reserved Memory..........cccvvvviiiiiiiiiieeciieeeenns 30
Runtime Library
Disabling Overflow.........ccccovveeeeiiiiiiiiene e, 32
ErTOrS . e 29
S
SAVE TEXL. .t 23

Page41l of 39

© Brendan Jones, 1984, 1998.

Stack

ChecKing.......couuviiiiiiiiiieeeeeeee e 26
ProCeSSOr.....ccviiiieiee e 26
UPL Data....ccooviiiiieeeeeeeeeeeee e 26
SUDIOULINES......cvviiiieciee e 17
T
Terminating OpCOde.........oovvvviiiiiiiiiieeeeieee e 26
V
(V2= | 12
Varables.......oo.ooiiiii e 12
(=10 12
VIC-20 EMUIALOrS......ccvieiiiiicieee e 38
W
while statement..........ccoooeiiiiiiiiiee e, 16

12/04/98 19:28

